Skip to main content

Summary and Outlook

  • Chapter
  • First Online:
Structural Mechanics of Anti-Sandwiches

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCONTINU))

  • 381 Accesses

Abstract

In present treatise an approach for structural analysis of Anti-Sandwiches is presented. In principle, theories for thin-walled structures are suitable for mechanical analysis at such configurations. Since mechanical properties and structural thicknesses of the different layers of an Anti-Sandwich differ widely, classical approaches for composite structures fail to predict correct results. Therefore, a layer-wise approach is chosen within the present discourse. Each layer is considered as a single continuum, while all equations are related to the middle surface of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach H (1987) The direct approach in the theory of viscoelastic shells (in Russian). Habilitation thesis, Leningrad Polytechnic Institute

    Google Scholar 

  2. Altenbach H, Eremeyev V (2017) Thin-walled structural elements: classification, classical and advanced theories, new applications, pp 1–62. https://doi.org/10.1007/978-3-319-42277-0_1

  3. Aßmus M, Köhl M (2012) Experimental investigation of the mechanical behavior of photovoltaic modules at defined inflow conditions. J Photonics Energy 2(1):1–11. https://doi.org/10.1117/1.JPE.2.022002

    Article  Google Scholar 

  4. Aßmus M, Naumenko K, Altenbach H (2016) A multiscale projection approach for the coupled global-local structural analysis of photovoltaic modules. Compos Struct 158:340–358. https://doi.org/10.1016/j.compstruct.2016.09.036

    Article  Google Scholar 

  5. Aßmus M, Nordmann J, Naumenko K, Altenbach H (2017) A homogeneous substitute material for the core layer of photovoltaic composite structures. Compos Part B: Eng 112:353–372. https://doi.org/10.1016/j.compositesb.2016.12.042

    Article  Google Scholar 

  6. Blinowski A, Ostrowska-Maciejewska J, Rychlewski J (1996) Two-dimensional Hooke’s tensors – isotropic decomposition, effective symmetry criteria. Arch Mech 48(2):325–345. http://am.ippt.pan.pl/am/article/view/v48p325/463

  7. Bourbaki N (1971) Elemente der Mathematikgeschichte. Vandenhoek & Ruprecht, Göttingen

    MATH  Google Scholar 

  8. Föppl A (1907) Vorlesungen über technische Mechanik. B.G. Teubner, Leipzig

    MATH  Google Scholar 

  9. Koiter W (1969) Theory of thin shells. Springer, Heidelberg, chap Foundations and basic equations of shell theory: a survey of recent progress, pp 93–105. IUTAM Symposium Copenhagen 1967. http://www.springer.com/gp/book/9783642884788

  10. Kowalczyk-Gajewska K, Ostrowska-Maciejewska J (2009) Review on spectral decomposition of Hooke’s tensor for all symmetry groups of linear elastic material. Eng Trans 57(3–4):145–183. www.ippt.pan.pl/Repository/o451.pdf

  11. Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112:283–291. https://doi.org/10.1016/j.compstruct.2014.02.009

    Article  Google Scholar 

  12. Naumenko K, Eremeyev VA (2017) A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Compos Struct 178:434–446. https://doi.org/10.1016/j.compstruct.2017.07.007

    Article  Google Scholar 

  13. Nye JF (1957) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Ely House

    MATH  Google Scholar 

  14. Schulze SH, Pander M, Naumenko K, Altenbach H (2012) Analysis of laminated glass beams for photovoltaic applications. Int J Solids Struct 49(15):2027–2036. https://doi.org/10.1016/j.ijsolstr.2012.03.028

    Article  Google Scholar 

  15. Voigt W (1966) Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Springer, Wiesbaden. https://doi.org/10.1007/978-3-663-15884-4. Reproduktion des 1928 erschienenen Nachdrucks der ersten Auflage von 1910

  16. von Kármán T (1910) Festigkeitsprobleme im Maschinenbau. Encyklopädie der mathematischen Wissenschaften IV:311–384

    Google Scholar 

  17. Zhang QZ, Shu BF, Chen MB, Liang QB, Fan C, Feng ZQ, Verlinden PJ (2015) Numerical investigation on residual stress in photovoltaic laminates after lamination. J Mech Sci Technol 29(2):655–662. https://doi.org/10.1007/s12206-015-0125-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Aßmus .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aßmus, M. (2019). Summary and Outlook. In: Structural Mechanics of Anti-Sandwiches. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-04354-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04354-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04353-7

  • Online ISBN: 978-3-030-04354-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics