Skip to main content

Magnetoencephalography System Based on Quantum Magnetic Sensors for Clinical Applications

  • Conference paper
  • First Online:
Sensors (CNS 2018)

Abstract

In this paper, we present the magnetoencephalography system developed by the Institute of Applied Sciences and Intelligent Systems of the National Research Council and recently installed in a clinical environment. The system employ ultra high sensitive magnetic sensors based on superconducting quantum interference devices (SQUIDs). SQUID sensors have been realized using a standard trilayer technology that ensures good performances over time and a good signal-to-noise ratio, even at low frequencies. They exhibit a spectral density of magnetic field noise as low as 2 fT/Hz1/2. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room having a shielding factor of 56 dB at 1 Hz. Preliminary measurement have demonstrated the effectiveness of the MEG system to perform useful measurements for clinical and neuroscience investigations. Such a magnetoencephalography is the first system working in a clinical environment in Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granata, C., Vettoliere, A.: Nano superconducting quantum interference device: a powerful tool for nanoscale investigations. Phys. Rep. 614, 1 (2016)

    Article  MathSciNet  Google Scholar 

  2. Clarke, J., Braginski, A.I. (eds.): The SQUID Handbook Vol II: Fundamentals and Technology of SQUIDs and SQUID Systems. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim (2006)

    Google Scholar 

  3. Del Gratta, C., Pizzella, V., Tecchio, F., Romani, G.L.: Magnetoencephalography—a noninvasive brain imaging method with 1 ms time resolution. Rep. Progr. Phys. 64, 1759–1814 (2001)

    Article  Google Scholar 

  4. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007)

    Article  Google Scholar 

  5. Tass, P., Rosenblum, M.G, Weule, J. Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J.: Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phy. Rev. Lett. 81, 3291–3294 (1998)

    Article  Google Scholar 

  6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009). https://doi.org/10.1038/nrn2575

    Article  Google Scholar 

  7. Van Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5(10), e13701 (2010). https://doi.org/10.1371/journal.pone.0013701

    Article  Google Scholar 

  8. Granata, C., Vettoliere, A., Rombetto, S., Nappi, C., Russo, M.: Performances of compact integrated superconducting magnetometers for biomagnetic imaging. J. Appl. Phys. 104(073905), 1–5 (2008)

    Google Scholar 

  9. Granata, C., Vettoliere, A., Russo, M.: Miniaturized superconducting quantum interference magnetometers for high sensitivity applications. Appl. Phys. Lett. 91, 122509 (2007)

    Article  Google Scholar 

  10. Rombetto, S., Granata, C., Vettoliere, A., Russo, M.: Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography. Sensors 14, 12114–12126 (2014)

    Article  Google Scholar 

  11. Gross, J., Baillet, S., Barnes, G.R., Henson, R.N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J.R., van Wassenhove, V., Wibral, M., Schoffelen, J.-M.: Good practice for conducting and reporting MEG research. Neuroimage 65, 349–63 (2013). https://doi.org/10.1016/j.neuroimage.2012.10.001

    Article  Google Scholar 

  12. Barbati, G., Porcaro, C., Zappasodi, F., Rossini, P.M., Tecchio, F.: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin. Neurophysiol. 115, 1220–1232 (2004). https://doi.org/10.1016/j.clinph.2003.12.015

    Article  Google Scholar 

  13. Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A.: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44 (1997)

    Google Scholar 

  14. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 15, 273–89 (2002). https://doi.org/10.1006/nimg.2001.0978

    Article  Google Scholar 

  15. Nolte, G.: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652 (2003). https://doi.org/10.1088/0031-9155/48/22/002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Granata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Granata, C. et al. (2019). Magnetoencephalography System Based on Quantum Magnetic Sensors for Clinical Applications. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics