Skip to main content

Diamond-Based Multi Electrode Arrays for Monitoring Neurotransmitter Release

  • Conference paper
  • First Online:
Sensors (CNS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 539))

Included in the following conference series:

Abstract

In the present work, we report on the fabrication of a diamond-based device targeted to the detection of quantal neurotransmitter release. We have developed Multi-electrode Arrays with 16 independent graphitic channels fabricated by means of Deep Ion Beam Lithography (DIBL). These devices are capable of detecting the in vitro exocytotic event from neurosecretory cells, while overcoming several critical limitations of standard amperometric techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S\(\ddot{u}\)dhof, T.C., Rizo, J., Su, T.C., S\(\ddot{u}\)dhof, T.C., Rizo, J.: Synaptic vesicle exocytosis, cold Spring Harb. Perspect. Biol. 3(12), 114 (2011)

    Google Scholar 

  2. Mellander, L.J., Trouillon, R., Svensson, M.I., Ewing, A.G.: Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion. Sci. Rep. 2 (2012)

    Google Scholar 

  3. Simonsson, L., Kurczy, M.E., Trouillon, R.L., Hook, F., Cans, A.S.: A functioning artificial secretory cell. Sci. Rep. 2 (2012)

    Google Scholar 

  4. Carabelli, V., et al.: Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem. Neurosci. 8(2), 252264 (2017)

    Article  Google Scholar 

  5. Granado, T.C., et al.: Progress in transparent diamond microelectrode arrays. Phys. Status Solidi 212(11), 2445–2453 (2015)

    Article  Google Scholar 

  6. Nemanich, R.J., Carlisle, J.A., Hirata, A., Haenen, K.: CVD diamondResearch, applications, and challenges. MRS Bull. 39(06), 490–494 (2014)

    Article  Google Scholar 

  7. Ariano, P., et al.: Cellular adhesion and neuronal excitability on functionalised diamond surfaces. Diam. Relat. Mater. 14(37), 669–674 (2005)

    Article  Google Scholar 

  8. Ariano, P., Lo Giudice, A., Marcantoni, A., Vittone, E., Carbone, E., Lovisolo, D.: A diamond-based biosensor for the recording of neuronal activity. Biosens. Bioelectron. 24(7), 2046–2050 (2009)

    Article  Google Scholar 

  9. Olivero, P., et al.: Direct fabrication of three-dimensional buried conductive channels in single crystal diamond with ion microbeam induced graphitization. Diam. Relat. Mater. 18(58), 870–876 (2009)

    Article  Google Scholar 

  10. Picollo, F., et al.: Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation. Diam. Relat. Mater. 19(56), 466469 (2010)

    Google Scholar 

  11. Picollo, F., et al.: Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond. New J. Phys. 14 (2012)

    Article  Google Scholar 

  12. Prawer, S., Kalish, R.: Ion-beam-induced transformation of diamond. Phys. Rev. B 51(22), 1571115722 (1995)

    Article  Google Scholar 

  13. Bosia, F., et al.: Finite element analysis of ion-implanted diamond surface swelling. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(19), 2991–2995 (2010)

    Article  Google Scholar 

  14. Bosia, F., et al.: Modification of the structure of diamond with MeV ion implantation. Diam. Relat. Mater. 20(56), 774778 (2011)

    Google Scholar 

  15. Bosia, F., et al.: Direct measurement and modelling of internal strains in ion-implanted diamond. J. Phys. Condens. Matter 25(38), 385–403 (2013)

    Google Scholar 

  16. Lagomarsino, S., et al.: Evidence of light guiding in ion-implanted diamond. Phys. Rev. Lett. 105(23), 233903 (2010)

    Article  Google Scholar 

  17. Castelletto, S., et al.: Diamond-based structures to collect and guide light. New. J. Phys. 13(2), 025020 (2011)

    Article  Google Scholar 

  18. Mohr, M., et al.: Characterization of the recovery of mechanical properties of ion-implanted diamond after thermal annealing. Diam. Relat. Mater. 63, 7579 (2016)

    Article  Google Scholar 

  19. Fu, J., et al.: Single crystal diamond cantilever for micro-electromechanical systems. Diam. Relat. Mater. 73, 267272 (2017)

    Article  Google Scholar 

  20. Drumm, V.S., et al.: Surface damage on diamond membranes fabricated by ion implantation and lift-off. Appl. Phys. Lett. 98(23), 231904 (2011)

    Article  Google Scholar 

  21. Lee, J.C., Magyar, A.P., Bracher, D.O., Aharonovich, I., Hu, E.L.: Fabrication of thin diamond membranes for photonic applications. Diam. Relat. Mater. 33, 4548 (2013)

    Article  Google Scholar 

  22. Forneris, J., et al.: A 3-dimensional interdigitated electrode geometry for the enhancement of charge collection efficiency in diamond detectors. EPL (Europhysics Letter) 108(1), 18001 (2014)

    Article  Google Scholar 

  23. Forneris, J., et al.: IBIC characterization of an ion-beam-micromachined multi-electrode diamond detector. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 306, 181–185 (2013)

    Article  Google Scholar 

  24. Olivero, P., et al.: Focused ion beam fabrication and IBIC characterization of a diamond detector with buried electrodes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269(20), 2340–2344 (2011)

    Article  Google Scholar 

  25. Lo Giudice, A., et al.: Lateral IBIC characterization of single crystal synthetic diamond detectors. Phys. Status Solidi—Rapid Res. Lett. 5(2), 80–82 (2011)

    Article  Google Scholar 

  26. Picollo, F., et al.: Fabrication of monolithic microfluidic channels in diamond with ion beam lithography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 404, 193–197 (2017)

    Article  Google Scholar 

  27. Strack, M.A., et al.: Buried picolitre fluidic channels in single-crystal diamond. Proceedings of SPIE 8923, 89232X (2013)

    Google Scholar 

  28. Hickey, D.P., Jones, K.S., Elliman, R.G.: Amorphization and graphitization of single-crystal diamond—a transmission electron microscopy study. Diam. Relat. Mater. 18(11), 13531359 (2009)

    Article  Google Scholar 

  29. Battiato, A., et al.: Softening the ultra-stiff: controlled variation of Youngs modulus in single-crystal diamond by ion implantation. Acta Mater. 116, 95103 (2016)

    Article  Google Scholar 

  30. Uzan-Saguy, C., Cytermann, C., Brener, R., Richter, V., Shaanan, M., Kalish, R.: Damage threshold for ion-beam induced graphitization of diamond. Appl. Phys. Lett. 67, 1194 (1995)

    Article  Google Scholar 

  31. Rigato, V.: Interdisciplinary Physics with Small Accelerators at LNL: Status and Perspectives, pp. 29–34 (2013)

    Google Scholar 

  32. Re, A., et al.: Ion Beam Analysis for the provenance attribution of lapis lazuli used in glyptic art: the case of the Collezione Medicea. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 348, 278–284 (2015)

    Article  Google Scholar 

  33. Olivero, P., et al.: Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation. Eur. Phys. J. B 75(2), 127132 (2010)

    Article  Google Scholar 

  34. Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 268(1112), 1818–1823 (2010)

    Google Scholar 

  35. Picollo, F., et al.: All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci. Rep. 6 (2016)

    Google Scholar 

  36. Picollo, F., et al.: Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 348, 199–202 (2015)

    Article  Google Scholar 

  37. Bernardi, E., Battiato, A., Olivero, P., Picollo, F., Vittone, E.: Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond. J. Appl. Phys. 117(2) (2015)

    Article  Google Scholar 

  38. Colombo, E., et al.: Fabrication of a NCD microelectrode array for amperometric detection with micrometer spatial resolution. Diam. Relat. Mater. 20(56), 793797 (2011)

    Google Scholar 

  39. Picollo, F., et al.: Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. Sensors 15(1), 515528 (2015)

    Google Scholar 

  40. Ditalia Tchernij, S., et al.: Electrical characterization of a graphite-diamond-graphite junction fabricated by MeV carbon implantation. Diam. Relat. Mater. 74, 125–131 (2017)

    Article  Google Scholar 

  41. Gosso, S., et al.: Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J. Physiol. 592(15), 32153230 (2014)

    Article  Google Scholar 

  42. Picollo, F., et al.: Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal. Chem. 88(15), 7493–7499 (2016)

    Article  Google Scholar 

  43. Picollo, F., et al.: A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Adv. Mater. 25(34), 46964700 (2013)

    Article  Google Scholar 

  44. Carabelli, V., et al.: Nanocrystalline diamond microelectrode arrays fabricated on sapphire techology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens. Bioelectron. 26(1), 9298 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Bruno for help in EIS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Tomagra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomagra, G. et al. (2019). Diamond-Based Multi Electrode Arrays for Monitoring Neurotransmitter Release. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics