We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Multidimensional Fourier Methods | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Multidimensional Fourier Methods

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this chapter, we consider d-dimensional Fourier methods for fixed \(d\in \mathbb N\). We start with Fourier series of d-variate, 2π-periodic functions \(f:\,\mathbb T^d \to \mathbb C\) in Sect. 4.1, where we follow the lines of Chap. 1. In particular, we present basic properties of the Fourier coefficients and learn about their decay for smooth functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Atkinson, W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework (Springer, Dordrecht, 2009)

    Google Scholar 

  2. E. Bedrosian, A product theorem for Hilbert transforms. Proc. IEEE 51(5), 868–869 (1963)

    Article  Google Scholar 

  3. A. Bovik, Handbook of Image and Video Processing, 2nd edn. (Academic, Burlington, 2010)

    MATH  Google Scholar 

  4. J.L. Brown, Analytic signals and product theorems for Hilbert transforms. IEEE Trans. Circuits Syst. 21, 790–792 (1974)

    Article  MathSciNet  Google Scholar 

  5. T. Bülow, G. Sommer, Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49(11), 2844–2852 (2001)

    Article  MathSciNet  Google Scholar 

  6. M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  7. W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, in Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data (1987), pp. 281–305

    Google Scholar 

  8. J.E. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  9. L. Grafakos, Classical Fourier Analysis, 2nd edn. (Springer, New York, 2008)

    MATH  Google Scholar 

  10. K. Gröchenig, An uncertainty principle related to the Poisson summation formula. Stud. Math. 121(1), 87–104 (1996)

    Article  MathSciNet  Google Scholar 

  11. S.L. Hahn, Hilbert Transforms in Signal Processing (Artech House, Boston, 1996)

    MATH  Google Scholar 

  12. S. Häuser, B. Heise, G. Steidl, Linearized Riesz transform and quasi-monogenic shearlets. Int. J. Wavelets Multiresolut. Inf. Process. 12(3), 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  13. F.W. King, Hilbert Transforms, Volume I (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  14. F.W. King, Hilbert Transforms, Volume II (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  15. U. Köthe, M. Felsberg, Riesz-transforms versus derivatives: on the relationship between the boundary tensor and the energy tensor, in Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005, ed. by R. Kimmel, N.A. Sochen, J. Weickert (Springer, Berlin, 2005), pp. 179–191

    Chapter  Google Scholar 

  16. K.G. Larkin, D.J. Bone, M.A. Oldfield, Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J. Opt. Soc. Am. A 18(8), 1862–1870 (2001)

    Google Scholar 

  17. R. Lasser, Introduction to Fourier Series (Marcel Dekker, New York, 1996)

    MATH  Google Scholar 

  18. S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn. (Elsevier/Academic, Amsterdam, 2009)

    Google Scholar 

  19. H.Q. Nguyen, M. Unser, J.P. Ward, Generalized Poisson summation formulas for continuous functions of polynomial growth. J. Fourier Anal. Appl. 23(2), 442–461 (2017)

    Article  MathSciNet  Google Scholar 

  20. M. Riesz, Sur les fonctions conjuguées. Math. Z. 27(1), 218–244 (1928)

    Article  MathSciNet  Google Scholar 

  21. L. Schwartz, Théorie des Distributions, (French), nouvelle edn. (Hermann, Paris, 1966)

    Google Scholar 

  22. V.L. Shapiro, Fourier Series in Several Variables with Applications to Partial Differential Equations (Chapman & Hall/CRC, Boca Raton, 2011)

    Book  Google Scholar 

  23. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  24. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971)

    MATH  Google Scholar 

  25. M. Storath, Directional multiscale amplitude and phase decomposition by the monogenic curvelet transform. SIAM J. Imag. Sci. 4(1), 57–78 (2011)

    Article  MathSciNet  Google Scholar 

  26. H. Triebel, Höhere Analysis (Deutscher Verlag der Wissenschaften, Berlin, 1972)

    MATH  Google Scholar 

  27. M. Unser, D. Van De Ville, Wavelet steerability and the higher-order Riesz transform. IEEE Trans. Image Process. 19(3), 636–652 (2010)

    Article  MathSciNet  Google Scholar 

  28. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  29. Y. Xu, D. Yan, The Bedrosian identity for the Hilbert transform of product functions. Proc. Am. Math. Soc. 134(9), 2719–2728 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plonka, G., Potts, D., Steidl, G., Tasche, M. (2018). Multidimensional Fourier Methods. In: Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04306-3_4

Download citation

Publish with us

Policies and ethics