Skip to main content

IGDT-Based Robust Operation of Integrated Electricity and Natural Gas Networks for Managing the Variability of Wind Power

  • Chapter
  • First Online:
Robust Optimal Planning and Operation of Electrical Energy Systems

Abstract

This chapter introduces an information-gap decision theory (IGDT)-based robust security-constrained unit commitment (SCUC) modeling of coordinated electricity and natural gas networks for managing uncertainty of wind power production. A comprehensive transmission system of natural gas, which delivers natural gas fuel to natural gas-fired plants, is considered. Mixed-integer nonlinear programming (MINLP) has been used for modeling the proposed method in GAMS software. A six-bus system with a six-node gas transmission network is considered to perform numerical tests and evaluate the performance of the introduced model. The obtained results of the study indicate that the natural gas network constraints and the uncertainty of wind energy production have effect on the daily operation cost of natural gas-fired plants and their participation in energy market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heydarian-Forushani, E., Golshan, M. E. H., Shafie-Khah, M., & Siano, P. (2018). Optimal operation of emerging flexible resources considering sub-hourly flexible ramp product. IEEE Transactions on Sustainable Energy, 9, 916–929.

    Article  Google Scholar 

  2. Wang, Q., Wu, H., Florita, A. R., Martinez-Anido, C. B., & Hodge, B.-M. (2016). The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales. Applied Energy, 184, 696–713.

    Article  Google Scholar 

  3. Wu, H., Shahidehpour, M., & Al-Abdulwahab, A. (2013). Hourly demand response in day-ahead scheduling for managing the variability of renewable energy. IET Generation, Transmission and Distribution, 7, 226–234.

    Article  Google Scholar 

  4. Mingfei, B., Jilai, Y., Shahidehpour, M., & Yiyun, Y. (2017). Integration of power-to-hydrogen in day-ahead security-constrained unit commitment with high wind penetration. Journal of Modern Power Systems and Clean Energy, 5, 337–349.

    Article  Google Scholar 

  5. Cui, H., Li, F., Hu, Q., Bai, L., & Fang, X. (2016). Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants. Applied Energy, 176, 183–195.

    Article  Google Scholar 

  6. Henderson, M. (2017). Energy system flexibility: The importance of being Nimble [from the editor]. IEEE Power and Energy Magazine, 15, 4–6.

    Google Scholar 

  7. Klimstra J., & Hotakainen, M. (2011). Smart Power Generation. 4th ed. Helsinki, Finland: Avain Publishers.

    Google Scholar 

  8. U. Energy. (2014). Information Administration, Annual Energy Outlook.

    Google Scholar 

  9. EIA. (2011). Annual Energy Review [Online], Available: http://www.eia.doe.gov/emeu/aer/

  10. Khaligh, V., Oloomi-Buygi, M., Anvari-Moghaddam, A., & Guerrero, J. M. (2018, June 12–15). A leader-follower approach to gas-electricity expansion planning problem. IEEE 18th international conference on Environment and Electrical Engineering and 2nd Industrial and Commercial Power Systems Europe (EEEIC 2018), Palermo, Italy.

    Google Scholar 

  11. Li, T., Eremia, M., & Shahidehpour, M. (2008). Interdependency of natural gas network and power system security. IEEE Transactions on Power Systems, 23, 1817–1824.

    Article  Google Scholar 

  12. Liu, C., Shahidehpour, M., Fu, Y., & Li, Z. (2009). Security-constrained unit commitment with natural gas transmission constraints. IEEE Transactions on Power Systems, 24, 1523–1536.

    Article  Google Scholar 

  13. Alabdulwahab, A., Abusorrah, A., Zhang, X., & Shahidehpour, M. (2015). Stochastic security-constrained scheduling of coordinated electricity and natural gas infrastructures. IEEE Systems Journal, 11, 1674–1683.

    Article  Google Scholar 

  14. Zhang, X., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Systems, 31, 592–601.

    Article  Google Scholar 

  15. Alabdulwahab, A., Abusorrah, A., Zhang, X., & Shahidehpour, M. (2015). Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Transactions on Sustainable Energy, 6, 606–615.

    Article  Google Scholar 

  16. He, Y., Shahidehpour, M., Li, Z., Guo, C., & Zhu, B. (2017). Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage. IEEE Transactions on Sustainable Energy, 9, 1061–1071.

    Article  Google Scholar 

  17. Chuan, H., Tianqi, L., Lei, W., & Shahidehpour, M. (2017). Robust coordination of interdependent electricity and natural gas systems in day-ahead scheduling for facilitating volatile renewable generations via power-to-gas technology. Journal of Modern Power Systems and Clean Energy, 5, 375–388.

    Article  Google Scholar 

  18. Soroudi, A., & Keane, A. (2015). Risk averse energy hub management considering plug-in electric vehicles using information gap decision theory. In Plug in electric vehicles in smart grids (pp. 107–127). Singapore: Springer.

    Google Scholar 

  19. Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G. B., & Shahidehpour, M. (2018). Robust short-term scheduling of integrated heat and power microgrids. IEEE Systems Journal, 99, 1–9.

    Google Scholar 

  20. Nazari-Heris, M., & Mohammadi-Ivatloo, B. (2018). Application of robust optimization method to power system problems. In Classical and recent aspects of power system optimization (pp. 19–32).

    Chapter  Google Scholar 

  21. Marin, M., Milano, F., & Defour, D. (2017). Midpoint-radius interval-based method to deal with uncertainty in power flow analysis. Electric Power Systems Research, 147, 81–87.

    Article  Google Scholar 

  22. Panigrahi, B. K., Sahu, S. K., Nandi, R., & Nayak, S. (2017, April). Probabilistic load flow of a distributed generation connected power system by two point estimate method. International conference on Circuit, Power and Computing Technologies (ICCPCT) (pp. 1–5), IEEE.

    Google Scholar 

  23. Nazari-Heris, M., Abapour, S., & Mohammadi-Ivatloo, B. (2017). Optimal economic dispatch of FC-CHP based heat and power micro-grids. Applied Thermal Engineering, 114, 756–769.

    Article  Google Scholar 

  24. Zare, K., Moghaddam, M. P., & El Eslami, M. K. S. (2010). Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology. Energy, 35, 2999–3007.

    Article  Google Scholar 

  25. Mohammadi-Ivatloo, B., Zareipour, H., Amjady, N., & Ehsan, M. (2013). Application of information-gap decision theory to risk-constrained self-scheduling of GenCos. IEEE Transactions on Power Systems, 28, 1093–1102.

    Article  Google Scholar 

  26. Moradi-Dalvand, M., Mohammadi-Ivatloo, B., Amjady, N., Zareipour, H., & Mazhab-Jafari, A. (2015). Self-scheduling of a wind producer based on information gap decision theory. Energy, 81, 588–600.

    Article  Google Scholar 

  27. Aghaei, J., Agelidis, V. G., Charwand, M., Raeisi, F., Ahmadi, A., Nezhad, A. E., et al. (2017). Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Transactions on Smart Grid, 8, 2296–2304.

    Article  Google Scholar 

  28. Nikoobakht, A., & Aghaei, J. (2016). IGDT-based robust optimal utilisation of wind power generation using coordinated flexibility resources. IET Renewable Power Generation, 11, 264–277.

    Article  Google Scholar 

  29. Ahmadi, A., Nezhad, A. E., & Hredzak, B. (2018). Security-constrained unit commitment in presence of Lithium-Ion battery storage units using information-gap decision theory. IEEE Transactions on Industrial Informatics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Nazari-Heris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirzaei, M.A., Sadeghi-Yazdankhah, A., Nazari-Heris, M., Mohammadi-ivatloo, B. (2019). IGDT-Based Robust Operation of Integrated Electricity and Natural Gas Networks for Managing the Variability of Wind Power. In: Mohammadi-ivatloo, B., Nazari-Heris, M. (eds) Robust Optimal Planning and Operation of Electrical Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-04296-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04296-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04295-0

  • Online ISBN: 978-3-030-04296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics