Skip to main content

Information-Gap Decision Theory: Principles and Fundamentals

  • Chapter
  • First Online:
Robust Optimal Planning and Operation of Electrical Energy Systems

Abstract

Solving optimization problems with multiple uncertainties has always been a challenging task in different scopes of science. While different approaches have been developed to take advantage of the stochastic space of the problem, these methods are intensively dependent of the probabilistic information of various variables which are not always available. Relying on the severity of the failure, information-gap decision theory (IGDT) is a robust optimization approach which is entirely autonomous from probabilistic information. In this model, a forecasted amount is presumed for each uncertain variable, and the sensitivity of objective functions is analyzed according to the deviation of each of these uncertain parameters from their forecasted value. In this method, two main types of uncertainty set models including energy-bound model and envelope-bound model are handled. In this chapter, these principles and fundamentals of IGDT are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Haim, Y. (2006). Info-gap decision theory: Decisions under severe uncertainty. San Diego: Academic.

    Chapter  Google Scholar 

  2. Rezaei, N., Ahmadi, A., Khazali, A., & Guerrero, J. M. (2018). Energy and frequency hierarchical management system using information gap decision theory for islanded microgrids. IEEE Transactions on Industrial Electronics, 65, 7921–7932.

    Article  Google Scholar 

  3. Khazali, A., Rezaei, N., Ahmadi, A., & Hredzak, B. (2018). Information gap decision theory based preventive/corrective voltage control for smart power systems with high wind penetration. IEEE Transactions on Industrial Informatics, 14(10), 4385–4394.

    Article  Google Scholar 

  4. Soroudi, A., Rabiee, A., & Keane, A. (2017). Information gap decision theory approach to deal with wind power uncertainty in unit commitment. Electric Power Systems Research, 145, 137–148.

    Article  Google Scholar 

  5. Bryan, B. S., & Thompson, C. J. (2007). Managing credit risk with info-gap uncertainty. The Journal of Risk Finance, 8(1), 24–34.

    Article  Google Scholar 

  6. Stranlund, J. K., & Ben-Haim, Y. (2008). Price-based vs. quantity-based environmental regulation under Knightian uncertainty: An info-gap robust satisficing perspective. Journal of Environmental Management, 87(3), 443–449.

    Article  Google Scholar 

  7. Yakov, B. H. (2005). Value-at-risk with info-gap uncertainty. The Journal of Risk Finance, 6(5), 388–403.

    Article  Google Scholar 

  8. Ben-Haim, Y., & Laufer, A. (1998). Robust reliability of projects with activity-duration uncertainty. Journal of Construction Engineering and Management, 124(2), 125–132.

    Article  Google Scholar 

  9. Meir, T., & Ben-Asher, J. Z. (2005). Modeling and analysis of integration processes for engineering systems. Systems Engineering, 8(1), 62–77.

    Article  Google Scholar 

  10. Regev, S., Shtub, A., & Ben-Haim, Y. (2006). Managing project risks as knowledge gaps. Project Management Quarterly, 37(5), 17.

    Article  Google Scholar 

  11. Carmel, Y., & Ben-Haim, Y. (2005). Info-gap robust-satisficing model of foraging behavior: Do foragers optimize or satisfice? The American Naturalist, 166(5), 633–641.

    Google Scholar 

  12. Dehghan, S., Kazemi, A., & Amjady, N. Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ε-constraint method. IET Generation, Transmission & Distribution, 8(5), 828–840. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2013.0427

  13. Ahmadi, A., Mavalizadeh, H., Zobaa, A. F., & Shayanfar, H. A. Reliability-based model for generation and transmission expansion planning. IET Generation, Transmission & Distribution, 11(2), 504–511. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2016.1058

  14. Shafiee, S., Zareipour, H., Knight, A. M., Amjady, N., & Mohammadi-Ivatloo, B. (2017). Risk-constrained bidding and offering strategy for a merchant compressed air energy storage plant. IEEE Transactions on Power Systems, 32(2), 946–957.

    Google Scholar 

  15. Kazemi, M., Mohammadi-Ivatloo, B., & Ehsan, M. (2015). Risk-constrained strategic bidding of GenCos considering demand response. IEEE Transactions on Power Systems, 30(1), 376–384.

    Article  Google Scholar 

  16. Rabiee, A., Nikkhah, S., Soroudi, A., & Hooshmand, E. Information gap decision theory for voltage stability constrained OPF considering the uncertainty of multiple wind farms. IET Renewable Power Generation, 11(5), 585–592. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-rpg.2016.0509

  17. Rabiee, A., Soroudi, A., & Keane, A. (2015). Information gap decision theory based OPF with HVDC connected wind farms. IEEE Transactions on Power Systems, 30(6), 3396–3406.

    Article  Google Scholar 

  18. Sniedovich, M. (2007). The art and science of modeling decision-making under severe uncertainty. Mathematical Modeling; Severe Uncertainty; Maximin; Worst-Case Analysis; Robust Optimization; Info-gap, 1, 26.

    Article  MathSciNet  MATH  Google Scholar 

  19. Moilanen, A., Teeffelen, A. J. A. V., Ben-Haim, Y., & Ferrier, S. (2009). How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. Restoration Ecology, 17(4), 470–478.

    Article  Google Scholar 

  20. Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376–384.

    Article  Google Scholar 

  21. Mohammadi-Ivatloo, B., Zareipour, H., Amjady, N., & Ehsan, M. (2013). Application of information-gap decision theory to risk-constrained self-scheduling of GenCos. IEEE Transactions on Power Systems, 28(2), 1093–1102.

    Article  Google Scholar 

  22. Moilanen, A., & Wintle, B. A. (2006). Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 129(3), 427–434.

    Article  Google Scholar 

  23. Soroudi, A., & Ehsan, M. (2013). IGDT based robust decision making tool for DNOs in load procurement under severe uncertainty. IEEE Transactions on Smart Grid, 4(2), 886–895.

    Article  Google Scholar 

  24. Moilanen, A., et al. (2006). Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 199(1), 115–124.

    Article  Google Scholar 

  25. Nicholson, E., & Possingham, H. P. (2007). Making conservation decisions under uncertainty for the persistence of multiple species. Ecological Applications, 17(1), 251–265.

    Article  Google Scholar 

  26. Moilanen, A., Wintle, B. A., Elith, J., & Burgman, M. (2006). Uncertainty analysis for regional-scale reserve selection. Conservation Biology, 20(6), 1688–1697.

    Article  Google Scholar 

  27. McDonald-Madden, E., Baxter, P. W. J., & Possingham, H. P. (2008). Making robust decisions for conservation with restricted money and knowledge. Journal of Applied Ecology, 45(6), 1630–1638.

    Article  Google Scholar 

  28. Ghahary, K., Abdollahi, A., Rashidinejad, M., & Alizadeh, M. I. (2018). Optimal reserve market clearing considering uncertain demand response using information gap decision theory. International Journal of Electrical Power & Energy Systems, 101, 213–222.

    Article  Google Scholar 

  29. Rezaei, N., Ahmadi, A., Khazali, A., & Aghaei, J. (2018). Multi-objective risk-constrained optimal bidding strategy of smart microgrids: An IGDT-based normal boundary intersection approach. IEEE Transactions on Industrial Informatics, 1–1. https://doi.org/10.1109/TII.2018.2850533

  30. Najafi-Ghalelou, A., Nojavan, S., & Zare, K. (2018). Heating and power hub models for robust performance of smart building using information gap decision theory. International Journal of Electrical Power & Energy Systems, 98, 23–35.

    Article  Google Scholar 

  31. Najafi-Ghalelou, A., Nojavan, S., & Zare, K. (2018). Information gap decision theory-based risk-constrained scheduling of smart home energy consumption in the presence of solar thermal storage system. Solar Energy, 163, 271–287.

    Article  Google Scholar 

  32. Najafi-Ghalelou, A., Nojavan, S., & Zare, K. (2018). Robust thermal and electrical management of smart home using information gap decision theory. Applied Thermal Engineering, 132, 221–232.

    Article  Google Scholar 

  33. Ahmadi, A., Nezhad, A. E., & Hredzak, B. (2018). Security-constrained unit commitment in presence of lithium-ion battery storage units using information-gap decision theory. IEEE Transactions on Industrial Informatics, 99, 1–1.

    Google Scholar 

  34. Jabari, F., Nojavan, S., Mohammadi-Ivatloo, B., Ghaebi, H., & Mehrjerdi, H. (2018). Risk-constrained scheduling of solar Stirling engine based industrial continuous heat treatment furnace. Applied Thermal Engineering, 128, 940–955.

    Article  Google Scholar 

  35. Nojavan, S., Zare, K., & Mohammadi-Ivatloo, B. (2017). Risk-based framework for supplying electricity from renewable generation-owning retailers to price-sensitive customers using information gap decision theory. International Journal of Electrical Power & Energy Systems, 93, 156–170.

    Article  Google Scholar 

  36. Nojavan, S., Majidi, M., & Zare, K. (2017). Risk-based optimal performance of a PV/fuel cell/battery/grid hybrid energy system using information gap decision theory in the presence of demand response program. International Journal of Hydrogen Energy, 42(16), 11857–11867.

    Article  Google Scholar 

  37. Nojavan, S., Majidi, M., & Zare, K. (2017). Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT. Energy Conversion and Management, 147, 29–39.

    Article  Google Scholar 

  38. Mavalizadeh, H., Ahmadi, A., Gandoman, F. H., Siano, P., & Shayanfar, H. A. (2017). Multiobjective robust power system expansion planning considering generation units retirement. IEEE Systems Journal, 12(3), 2664–2675.

    Article  Google Scholar 

  39. Nojavan, S., Zare, K., & Mohammadi-Ivatloo, B. (2017). Information gap decision theory-based risk-constrained bidding strategy of price-taker GenCo in joint energy and reserve markets. Electric Power Components and Systems, 45(1), 49–62.

    Article  Google Scholar 

  40. Alipour, M., Zare, K., & Mohammadi-Ivatloo, B. (2016). Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets. Renewable and Sustainable Energy Reviews, 60, 421–432.

    Article  Google Scholar 

  41. Charwand, M., Ahmadi, A., Sharaf Adel, M., Gitizadeh, M., & Esmaeel Nezhad, A. (2015). Robust hydrothermal scheduling under load uncertainty using information gap decision theory. International Transactions on Electrical Energy Systems, 26(3), 464–485.

    Article  Google Scholar 

  42. Nojavan, S., Ghesmati, H., & Zare, K. (2016). Robust optimal offering strategy of large consumer using IGDT considering demand response programs. Electric Power Systems Research, 130, 46–58.

    Article  Google Scholar 

  43. Schweppe, F. C. (1973). Uncertain dynamic systems. Englewood Cliffs, N. J.: Prentice Hall.

    Google Scholar 

  44. Aghaei, J., et al. (2017). Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Transactions on Smart Grid, 8(5), 2296–2304.

    Article  Google Scholar 

  45. Murphy, C., Soroudi, A., & Keane, A. (2016). Information gap decision theory-based congestion and voltage management in the presence of uncertain wind power. IEEE Transactions on Sustainable Energy, 7(2), 841–849.

    Article  Google Scholar 

  46. Ahmadigorji, M., Amjady, N., & Dehghan, S. (2018). A robust model for multiyear distribution network reinforcement planning based on information-gap decision theory. IEEE Transactions on Power Systems, 33(2), 1339–1351.

    Article  Google Scholar 

  47. Zare, K., Moghaddam, M. P., & Sheikh-El-Eslami, M. K. (2011). Risk-based electricity procurement for large consumers. IEEE Transactions on Power Systems, 26(4), 1826–1835.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezaei, N., Ahmadi, A., Nezhad, A.E., Khazali, A. (2019). Information-Gap Decision Theory: Principles and Fundamentals. In: Mohammadi-ivatloo, B., Nazari-Heris, M. (eds) Robust Optimal Planning and Operation of Electrical Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-04296-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04296-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04295-0

  • Online ISBN: 978-3-030-04296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics