Skip to main content

Robust Optimal Multi-agent-Based Distributed Control Scheme for Distributed Energy Storage System

  • Chapter
  • First Online:
Robust Optimal Planning and Operation of Electrical Energy Systems
  • 697 Accesses

Abstract

The multi-agent system is emerging as an effecting tool for the realization of the smart power distribution system. The smart power distribution system comprises the different scattered entities such as grid supply, renewable generations, customers, etc. In this distributed system, with the use of information and communication technology (ICT) and control systems, multi-agent system can implement different control and management schemes. The renewable generations such as solar photovoltaic (PV), and wind, as well as electrical load are associated with uncertainties. In this chapter, different battery agents are designed to work for scattered distributed battery energy storage system (BESS). These battery agents decide the power exchange for charging and discharging of BESS in order to balance the power mismatch and cater uncertainties in the smart power distribution system. The LQR-based distributed robust optimal control schemes are designed for battery agents to achieve the objective of balancing the power mismatch in the presence of uncertainties. The proposed control schemes show that the effects of uncertainties in power distribution system, in terms of power and energy sharing, are distributed and catered by all energy storage devices as per their energy storing capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sumathi, S., Kumar, L. A., & Surekha, P. (2015). Solar PV and wind energy conversion systems an introduction to theory, modeling with MATLAB/SIMULINK, and the role of soft computing techniques. Cham: Springer.

    Google Scholar 

  2. Song, S., Ko, B., Suh, J., Han, C., & Jang, G. (2017). Operation algorithm of PV/BESS application considering demand response uncertainty in an independent microgrid system. Journal of International Council on Electrical Engineering, 7(1), 242–248.

    Article  Google Scholar 

  3. Prusty, B., Ali, S., & Sahoo, D. (2012). Modeling and control of grid connected hybrid photo voltaic/battery distributed generation system. International Journal of Engineering Research and Technology, 24(1), 125–132.

    Google Scholar 

  4. Rai, V., Reeves, C., & Margolis, R. (2016). Overcoming barriers and uncertainties in the adoption of residential solar PV. Renewable Energy, 89, 498–505.

    Article  Google Scholar 

  5. Attarha, A., Amjady, N., & Dehghan, S. (2018). Affinely adjustable robust bidding strategy for a solar plant paired with a battery storage. IEEE Transactions on Smart Grid, PP(99), 1. https://doi.org/10.1109/TSG.2018.2806403.

  6. Ela, E., Diakov, V., Ibanez, E., & Heaney, M. (2013). Impacts of variability and uncertainty in solar photovoltaic generation at multiple timescales. National Renewable Energy Laboratory, 1, 41.

    Google Scholar 

  7. de la Fuente, D. V., Rodriguez, C. L. T., Garcera, G., Figueres, E., & Gonzalez, R. O. (2013). Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities. IEEE Transactions on Industrial Electronics, 60(4), 1571–1581.

    Article  Google Scholar 

  8. Kim, S.-T., Bae, S., Kang, Y. C., & Park, J.-W. (2015). Energy management based on the photovoltaic hpcs with an energy storage device. IEEE Transactions on Industrial Electronics, 62(7), 4608–4617.

    Article  Google Scholar 

  9. Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2010). Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems, 25(1), 360–370.

    Article  Google Scholar 

  10. Zeng, J., Liu, J. F., Wu, J., & Ngan, H. W. (2011). A multi-agent solution to energy management in hybrid renewable energy generation system. Renewable Energy, 36(5), 1352–1363.

    Article  Google Scholar 

  11. Conti, S., & Raiti, S. (2007). Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators. Solar Energy, 81, 1473–1481.

    Article  Google Scholar 

  12. Paparoditis, E., & Sapatinas, T. (2013). Short-term load forecasting: the similar shape functional time-series predictor. IEEE Transactions on Power Systems, 28(4), 3818–3825.

    Article  Google Scholar 

  13. Xydas, E., Qadrdan, M., Marmaras, C., Cipcigan, L., Jenkins, N., & Ameli, H. (2017). Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators. Applied Energy, 192, 382–394.

    Article  Google Scholar 

  14. Sun, X., Luh, P. B., Michel, L. D., Corbo, S., Cheung, K. W., Guan, W., & Chung, K. (2013). An efficient approach for short-term substation load forecasting. IEEE Power & Energy Society General Meeting. https://doi.org/10.1109/PESMG.2013.6673009.

  15. Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2014). Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability. Applied Energy, 113, 1162–1170.

    Article  Google Scholar 

  16. Murata, A., Ohtake, H., & Oozeki, T. (2018). Modeling of uncertainty of solar irradiance forecasts on numerical weather predictions with the estimation of multiple confidence intervals. Renewable Energy, 117, 193–201.

    Article  Google Scholar 

  17. Wolfs, P., Emami, K., Lin, Y., & Palmer, E. (2018). Load forecasting for diurnal management of community battery systems. Journal of Modern Power System and Clean Energy, 6(2), 215–222.

    Article  Google Scholar 

  18. Rahbari-Asr, N., Zhang, Y., & Mo-Yuen, C. (2015). Consensus-based distributed scheduling for cooperative operation of distributed energy resources and storage devices in smart grids. IET Generation, Transmission and Distribution, 10(5), 1268–1277.

    Article  Google Scholar 

  19. Zhao, T., & Ding, Z. (2018). Distributed agent consensus-based optimal resource management for microgrids. IEEE Transactions on Sustainable Energy, 9(1), 443–452.

    Article  MathSciNet  Google Scholar 

  20. Fortenbacher, P., Mathieu, J. L., & Andersson, G. (2017). Modeling and optimal operation of distributed battery storage in low voltage grids. IEEE Transactions on Power Systems, 32(6), 4340–4350.

    Article  Google Scholar 

  21. Xu, Y. (2015). Optimal distributed charging rate control of plug-in electric vehicles for demand management. IEEE Transactions on Power Systems, 30(3), 1536–1545.

    Article  Google Scholar 

  22. Xu, Y., Yang, Z., Gu, W., Li, M., & Deng, Z. (2017). Robust real-time distributed optimal control based energy management in a smart grid. IEEE Transactions on Smart Grid, 8(4), 1568–1579.

    Article  Google Scholar 

  23. Morstyn, T., Hredzak, B., & Agelidis, V. G. (2018). Network topology independent multi-agent dynamic optimal power flow for microgrids with distributed energy storage systems. IEEE Transactions on Smart Grid, 9(4), 3419–3429.

    Article  Google Scholar 

  24. Dimeas, A. L., & Hatziargyrious, N. D. (2005). Operation of multi agent system for micro grid control. IEEE Transaction Power System, 20(3), 1447–1445.

    Article  Google Scholar 

  25. Dimeas, A. L., & Hatziargyriou, N. D. (2007, November). Agent based control of virtual power plants. Interference conference on intelligent systems applications to power systems. ISAP 2007, Toki Messe, Niigata.

    Google Scholar 

  26. McArthur, S. D. J., Davidson, E. M., Catterson, M. V., Dimeas, A. L., Ponci, F., Hatziargyriou, N. D., & Funabashi, T. (2007). Multi agent systems for power engineering applications –part I: Concepts, approaches and technical challenges. IEEE Transaction on Power Systems, 22(4), 1743–1752.

    Article  Google Scholar 

  27. McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Ponci, F., Hatziargyriou, N. D., & Funabashi, T. (2007). Multi agent systems for power engineering applications –part II: Technologies, standards and tools for building multi agent systems. IEEE Transaction on Power Systems, 22(4), 1753–1759.

    Article  Google Scholar 

  28. Colson, C. M., Nehrir, M. H., & Gunderson, R. W. (2011, August–September). Multi agent microgrid power management. 18th IFAC World Congress, Milano.

    Article  Google Scholar 

  29. Fakham, H., Doniec, A., Colas, F., & Guillaud, X. (2010). A multi-agent system for a distributed power management of micro turbine generators connected to grid. IFAC Proceedings. 43(1), 175–180.

    Article  Google Scholar 

  30. Davidson, E. M., McArthur, S. D. J., McDonald, J. R., Cumming, T., & Watt, I. (2006). Applying multi-agent system technology in practice: Automated management and analysis of SCADA and digital fault recorder data. IEEE Transaction on Power Systems, 21(2), 559–566.

    Article  Google Scholar 

  31. Huang, K., Srivastava, S. K., Cartes, D. A., & Sun, L. (2009). Market based multi-agent system for reconfiguration of shipboard power systems. Electric Power Systems, 79, 550–556.

    Article  Google Scholar 

  32. Praca, I., Ramos, C., Vale, Z., & Corderio, M. (2003). MASCEM: A multi agent system that simulates competitive electricity markets. IEEE Intelligent System, 18(6), 54–60.

    Article  Google Scholar 

  33. Karitov, V. S. (2004). Real-world market representation with agents. IEEE Power Energy Magazine, 2(4), 39–46.

    Article  Google Scholar 

  34. Nagata, T., & Sasaki, H. (2002). A multi-agent approach to power system restoration. IEEE Transaction Power System, 17(2), 457–462.

    Article  Google Scholar 

  35. McArthur, S. D. J., Strachan, S. M., & Jahn, G. (2004). The design of a multi-agent transformer condition monitoring system. IEEE Transaction Power System, 19(4), 1845–1852.

    Article  Google Scholar 

  36. Mangina, E. E., McArthur, S. D. J., McDonald, J. R., & Moyes, A. (2001). A multi agent system for monitoring industrial gas turbine start-up sequences. IEEE Transaction Power System, 16(3), 396–401.

    Article  Google Scholar 

  37. Buse, D. P., Sun, P., Wu, Q. H., & Fitch, J. (2003, March–April). Agent – Based substation automation. IEEE Power Energy Magazine, 1(2), 50–55.

    Article  Google Scholar 

  38. Logenthiran, T., Srinivasan, D., & Khambadkone, A. M. (2011). Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system. Electrical Power System Research, 81, 138–148.

    Article  Google Scholar 

  39. Hossack, J., Menal, A. J., McArthur, S. D. J., & McDonald, J. R. (2003). A multi-agent architecture for protection engineering diagnostic assistance. IEEE Transaction on Power System, 18(2), 639–647.

    Article  Google Scholar 

  40. Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions Automatic Control, 49, 1464–1476.

    Article  MathSciNet  Google Scholar 

  41. Reza, O.-S., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

    Article  Google Scholar 

  42. Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control: Theory and applications. London: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desh Deepak Sharma .

Editor information

Editors and Affiliations

Appendix

Appendix

13.1.1 Proof of theorem

Let the error system for (13.26) be

$$ {\displaystyle \begin{array}{l}e\left(k+1\right)={A}_xe(k)+{B}_xU(k),\\ {}U(k)=-{L}_xe(k)\end{array}} $$
(13.45)

where Ax =  diag (Ax,1, Ax,2, …, Ax,n) and Bx =  diag (Bx,1, Bx,2, …, Bx,n) and

$$ e(k)=X(k)-{1}_n\otimes U(k) $$
(13.46)

The modified LQR-based optimal control problem is

$$ \underset{U(k)}{\min }\ \sum \limits_{k=0}^{\infty }e{(k)}^T Qe(k)+U{(k)}^T RU(k) $$
(13.47)

For the system X(k+1) = AX(k)+BU(k), the discrete time ARE is

$$ {A}^T PA-P+Q-{A}^T PB{\left(R+{B}^T PB\right)}^{-1}{B}^T PA=0 $$
(13.48)

For the system (13.45), the ARE is

$$ Q={PB}_x{\left(R+{B}_x^2P\right)}^{-1}{B}_xP $$
(13.49)

where A = Ax = 1 and B = Bx.

Let Bx,1 = Bx,2 = … = Bx,n = Bx,0

Then matrix Bx = Bx,0In

The optimal feedback gain matrix is

$$ {L}_x={\left(R+{B}_{x,0}^2{I}_nP\right)}^{-1}{B}_{x,0}{I}_nP $$
(13.50)

Multiply R−1 both sides of (13.49) then

$$ {R}^{-1}Q={R}^{-1}{PB}_{x,0}{I}_n{\left(R+{B}_{x,0}^2{I}_nP\right)}^{-1}{B}_{x,0}{I}_nP $$
(13.51)
$$ {R}^{-1}Q={R}^{-1}{PB}_{x,0}{\left({I}_n+{B}_{x,0}^2{R}^{-1}P\right)}^{-1}{B}_{x,0}{R}^{-1}P $$
(13.52)

Since it is known that

$$ {\left({I}_n+{B}_{x,0}^2{R}^{-1}P\right)}^{-1}={I}_n-{B}_{x,0}^2{R}^{-1}P{\left({I}_n+{B}_{x,0}^2{R}^{-1}P\right)}^{-1} $$
(13.53)

We now get

$$ {\displaystyle \begin{array}{l}{R}^{-1}{PB}_{x,0}\left({I}_n+{B}_{x,0}^2{R}^{-1}P\right){B}_{x,0}{R}^{-1}P={\left[{B}_{x,0}{R}^{-1}P\right]}^2-{B}_{x,0}^2{R}^{-1}P\\ {}\times \left[{R}^{-1}{PB}_{x,0}{\left({I}_n+{B}_{x,0}^2{R}^{-1}P\right)}^{-1}{B}_{x,0}{R}^{-1}P\right]\end{array}} $$
(13.54)
$$ {R}^{-1}Q={B}_{x,0}^2{\left({R}^{-1}P\right)}^2-{B}_{x,0}^2{R}^{-1}{PR}^{-1}Q $$
(13.55)

On simplification it is obtained that

$$ {R}^{-1}P=\frac{1}{2}\left[{R}^{-1}Q+\sqrt{{\left({R}^{-1}Q\right)}^2+\frac{4{R}^{-1}Q}{B_x^2}}\right] $$
(13.56)

Hence, the optimal feedback gain matrix is

$$ {L}_x^{\ast }=\frac{B_{x,0}}{2}\left[\sqrt{{\left({R}^{-1}Q\right)}^2+\frac{4{R}^{-1}Q}{B_{x,0}^2}}-{R}^{-1}Q\right] $$
(13.57)

Let

$$ {L}_x^{\ast }=\mathit{\operatorname{diag}}\left({d}_{x,1},{d}_{x,2}\dots, {d}_{x,n}\right) $$
(13.58)

Then, for ith agent the feedback gain is

$$ {d}_{x,\mathrm{i}}=\frac{B_{x,0}}{2}\left[\sqrt{{\left(\frac{q_i}{r_i}\right)}^2+\frac{4{q}_i}{B_{x,0}^2{r}_i}}-\frac{q_i}{r_i}\right] $$
(13.59)

Similarly, it can be proved that

$$ {d}_{y,\mathrm{i}}=\frac{B_{y,0}}{2}\left[\sqrt{{\left(\frac{q_i}{r_i}\right)}^2+\frac{4{q}_i}{B_{y,0}^2{r}_i}}-\frac{q_i}{r_i}\right] $$
(13.60)

Let

$$ {B}_{x,0}^2=\frac{4}{3}\frac{r_i}{q_i} $$
(13.61)

Then from (13.59)

$$ {d}_{x,\mathrm{i}}=\frac{B_{x,0}}{2}\left[\sqrt{{\left(\frac{q_i}{r_i}\right)}^2+3{\left(\frac{q_i}{r_i}\right)}^2}-\frac{q_i}{r_i}\right] $$
(13.62)
$$ {d}_{x,\mathrm{i}}=\frac{B_{x,0}}{2}\frac{q_i}{r_i} $$
(13.63)

Similarly, we can obtain

$$ {d}_{y,\mathrm{i}}=\frac{B_{y,0}}{2}\frac{q_i}{r_i} $$
(13.64)

While

$$ {B}_{y,0}^2=\frac{4}{3}\frac{r_i}{q_i} $$
(13.65)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D.D., Lin, J. (2019). Robust Optimal Multi-agent-Based Distributed Control Scheme for Distributed Energy Storage System. In: Mohammadi-ivatloo, B., Nazari-Heris, M. (eds) Robust Optimal Planning and Operation of Electrical Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-04296-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04296-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04295-0

  • Online ISBN: 978-3-030-04296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics