Advertisement

Nature Inspired Conceptual Design of a Micro Neural Probe for Deep Brain Stimulation

  • Huaizhong LiEmail author
  • Viet Huy Nguyen
  • Hong Zhang
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)

Abstract

Deep brain stimulation (DBS) is an exciting method to treat human movement disorders, such as Parkinson’s disease, through placement of high frequency stimulating electrodes in the region of the ventral intermediate nucleus of the thalamus. To overcome the drawbacks of currently available electrodes in the market for DBS, a conceptual design of a micro neural probe is proposed to reduce the size of the cross section and without affecting the stimulation effects. The design concept is inspired by mosquito fascicles. Instead of using the 1.25 mm circular probes, a 0.5 mm semi-circular probe is proposed for use in this study. The neural probe is designed to penetrate through a foundation structure, which provides a function similar to the protective sheath surrounding the fascicle to provide support to the beam. In such a way, the instantaneous strut length bearing the buckling load can be significantly reduced. Simulation analysis showed that such a probe can withstand an axial force of 2 N without buckling under a safety factor of 5, which is above the magnitude of the resistance force of around 1.6 N in the probe penetration.

Keywords

Deep brain stimulation Micro neural probe Biomimicry Buckling 

References

  1. 1.
    Dickinson, M.H.: Bionics: biological insight into mechanical design. Proc. Natl. Acad. Sci. U.S.A. 96(25), 14208–14209 (1999)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Zhou, J., Liu, P.C., Ullah, S., Zhang, Y.F., Li, S.L., Li, X.P.: Review of deep brain stimulation micro-electrodes. In: Advanced Materials Research, vol. 500, pp. 596–602. Trans Tech Publications (2012)Google Scholar
  4. 4.
    Perlmutter, J.S., Mink, J.W.: Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006).  https://doi.org/10.1146/annurev.neuro.29.051605.112824CrossRefGoogle Scholar
  5. 5.
    Rezai, A.R., Kopell, B.H., Gross, R.E., Vitek, J.L., Sharan, A.D., Limousin, P., Benabid, A.-L.: Deep brain stimulation for Parkinson’s disease: surgical issue. Mov. Disord. 21, 197–218 (2006)CrossRefGoogle Scholar
  6. 6.
    Schwalb, J.M., Hamani, C.: History and the future of deep brain stimulation. Neurol. Surg. 3–13 (2008)Google Scholar
  7. 7.
    Breit, S., Schulz, J.B., Benabid, A.-L.: Deep brain stimulation. Cell Tissue Res. 318(1), 275–288 (2004)CrossRefGoogle Scholar
  8. 8.
    Lyons, K.E., Wilkinson, S.B., Overman, J., Pahwa, R.: Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology 63(4), 612–616 (2004)CrossRefGoogle Scholar
  9. 9.
    Chan, D.T., Zhu, X.L., Yeung, J.H., Mok, V.C., Wong, E., Lau, C., Group, T.M.D., et al.: Complications of deep brain stimulation: a collective review. Asian J. Surg. 32(4), 258–263 (2009)Google Scholar
  10. 10.
    Morishita, T., Foote, K.D., Burdick, A.P., Katayama, Y., Yamamoto, T., Frucht, S.J., Okun, M.S.: Identification and management of deep brain stimulation intra-and postoperative urgencies and emergencies. Park. Relat. Disord. 16(3), 153–162 (2010)CrossRefGoogle Scholar
  11. 11.
    Schiefer, T.K., Matsumoto, J.Y., Lee, K.H.: Moving forward: advances in the treatment of movement disorders with deep brain stimulation. Front. Integr. Neurosci. 5(69) (2011)Google Scholar
  12. 12.
    Benabid, A.-L.: Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 13, 696–706 (2003)CrossRefGoogle Scholar
  13. 13.
    Blomstedt, P., Hariz, M.I.: Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir. 147(10), 1061–1064 (2005)CrossRefGoogle Scholar
  14. 14.
    Butson, C.R., McIntyre, C.C.: Role of electrode design on the volume of tissue activated during deep brain stimualtion. J. Neural Eng. 3(1), 1–8 (2006)CrossRefGoogle Scholar
  15. 15.
    Snow, S., Jacobsen, S.C., Wells, D.L., Horch, K.W.: Microfabricated cylindrical multielectrodes for neural stimulation. IEEE Trans. Biomed. Eng. 53, 320–326 (2006)CrossRefGoogle Scholar
  16. 16.
    Cheung, K.C.: Implantable microscale neural interfaces. Biomed. Microdevice 9(6), 923–938 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ramasubramanian, M.K., Bargab, O.M., Swaminathan, V.: Mechanics of mosquito bites with application to microneedle design. Bioinspiration Biomim. 3, 1–10 (2008)CrossRefGoogle Scholar
  18. 18.
    Ma, G., Wu, C.: Microneedle, bio-microneedle and bio-inspired microneedle: a review. J. Controlled Release 251, 11–23 (2017)CrossRefGoogle Scholar
  19. 19.
    Kim, J., Park, S., Nam, G., Choi, Y., Woo, S., Yoon, S.H.: Bioinspired microneedle insertion for deep and precise skin penetration with low force: why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater. 78, 480–490 (2017)CrossRefGoogle Scholar
  20. 20.
    Parittotokkaporn, T., Frasson, L., Schneider, A., Huq, S.E., Davies, B.L., Degenaar, P., Baena, F.M.R., et al.: Soft tissue traversal with zero net force: feasibility study of a biologically inspired design based on reciprocal motion. In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, pp. 80–85. IEEE (2009)Google Scholar
  21. 21.
    Kong, X.Q., Wu, C.W.: Measurement and prediction of insertion force for the mosquito fascicle penetrating into human skin. J. Bionic Eng. 6(2), 143–152 (2009)CrossRefGoogle Scholar
  22. 22.
    DiMaio, S.P., Salcudean, S.E.: Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 19(5), 864–875 (2003)CrossRefGoogle Scholar
  23. 23.
    Lai, H.Y., Liao, L.D., Lin, C.T., Hsu, J.H., He, X., Chen, Y.Y., Shih, Y.Y.I., et al.: Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. J. Neural Eng. 9(3), 036001 (2012)CrossRefGoogle Scholar
  24. 24.
    Molloy, J., Ritter, R., Grady, M., Howard, M., Gillies, E.Q.: Experimental determination of the force required for insertion a thermoseed into deep brain tissue. Biomed. Eng. 299–313 (1990)Google Scholar
  25. 25.
  26. 26.
    Nakamaru, Y., Honma, H.: Fabrication of three-dimensional microstructure by nickel plating and photolithography. Trans. IMF 87(5), 259–263 (2009)CrossRefGoogle Scholar
  27. 27.
    John, J., Li, Y., Zhang, J., Loeb, J.A., Xu, Y.: Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J. Micromech. Microeng. 21(10), 105011 (2011)CrossRefGoogle Scholar
  28. 28.
    Wei, X.F.: Analysis and design of electrodes for deep brain stimulation. Ph.D. Dissertation, Duke University (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Griffith School of EngineeringGold Coast Campus, Griffith UniversitySouthportAustralia
  2. 2.The University of New South WalesSydneyAustralia
  3. 3.Guangdong University of TechnologyGuangzhouChina

Personalised recommendations