Advertisement

A Computational Framework Towards Energy Efficient Casting Processes

  • Michail Papanikolaou
  • Emanuele Pagone
  • Konstantinos Salonitis
  • Mark Jolly
  • Charalampos Makatsoris
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)

Abstract

Casting is one of the most widely used, challenging and energy intensive manufacturing processes. Due to the complex engineering problems associated with casting, foundry engineers are mainly concerned with the quality of the final casting component. Consequently, energy efficiency is often disregarded and huge amounts of energy are wasted in favor of high quality casting parts. In this paper, a novel computational framework for the constrained minimization of the pouring temperature is presented and applied on the Constrained Rapid Induction Melting Single Shot Up-Casting (CRIMSON) process. Minimizing the value of the pouring temperature can lead to significant energy savings during the melting and holding processes as well as to higher yield rate due to the resulting reduction of the solidification time. Moreover, a multi-objective optimization component has been integrated into our scheme to assist decision makers with estimating the trade-off between process parameters.

Keywords

CRIMSON Sustainability Computational framework Sand casting 

Notes

Acknowledgements

The authors would like to acknowledge the UK EPSRC projects “Small is Beautiful” and “Energy Resilient Manufacturing 2: Small is Beautiful Phase 2 (SIB2)” for funding this work under grants EP/M013863/1 and EP/P012272/1 respectively.

References

  1. 1.
    Key world energy statistics (2017)Google Scholar
  2. 2.
    CO2 emissions from manufacturing industries and construction (% of total fuel combustion)|Data. https://data.worldbank.org/indicator/EN.CO2.MANF.ZS?end=2014&start=1998
  3. 3.
    Salonitis, K., Ball, P.: Energy efficient manufacturing from machine tools to manufacturing systems. Procedia CIRP 7, 634–639 (2013).  https://doi.org/10.1016/J.PROCIR.2013.06.045CrossRefGoogle Scholar
  4. 4.
    Salonitis, K., Zeng, B., Mehrabi, H.A., Jolly, M.: The challenges for energy efficient casting processes. Procedia CIRP 40, 24–29 (2016).  https://doi.org/10.1016/J.PROCIR.2016.01.043CrossRefGoogle Scholar
  5. 5.
    Campbell, J.: Complete Casting Handbook: Metal Casting Processes, Techniques and Design (2015)Google Scholar
  6. 6.
    BCS: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry (2005). IncorporatedGoogle Scholar
  7. 7.
    Thollander, P., Ottosson, M.: Energy management practices in Swedish energy-intensive industries. J. Clean. Prod. 18, 1125–1133 (2010).  https://doi.org/10.1016/J.JCLEPRO.2010.04.011CrossRefGoogle Scholar
  8. 8.
    Mehrabi, H., Jolly, M., Salonitis, K.: Road-Mapping Towards a Sustainable Lower Energy Foundry, pp. 251–260. Springer, Cham (2016)Google Scholar
  9. 9.
    Salonitis, K., Jolly, M.R., Zeng, B., Mehrabi, H.: Improvements in energy consumption and environmental impact by novel single shot melting process for casting. J. Clean. Prod. 137, 1532–1542 (2016).  https://doi.org/10.1016/J.JCLEPRO.2016.06.165CrossRefGoogle Scholar
  10. 10.
    Pagone, E., Jolly, M., Salonitis, K.: The development of a tool to promote sustainability in casting processes. Procedia CIRP 55, 53–58 (2016).  https://doi.org/10.1016/J.PROCIR.2016.09.001CrossRefGoogle Scholar
  11. 11.
    Barkhudarov, M., Hirt, C.: Casting simulation: Mold filling and solidification–Benchmark calculations using FLOW-3D ® (1995)Google Scholar
  12. 12.
    Reilly, C., Green, N.R., Jolly, M.R., Gebelin, J.-C.: The modelling of oxide film entrainment in casting systems using computational modelling. Appl. Math. Model. 37, 8451–8466 (2013).  https://doi.org/10.1016/J.APM.2013.03.061CrossRefzbMATHGoogle Scholar
  13. 13.
    Imafuku, I., Chijiiwa, K.: A mathematical model for shrinkage cavity prediction in steel castings. Trans. Am. Foundrymen’s Soc. 91, 527–540 (1983)Google Scholar
  14. 14.
    Hirt, C.W.: Modeling Shrinkage Induced Micro-porosity. Flow Sci Inc., Santa Fe (2004)Google Scholar
  15. 15.
    Ravi, B.: Casting Simulation – Best Practices. Trans 58th IFC (2010)Google Scholar
  16. 16.
    Zeng, J., Koitzsch, R., Pfeifer, H., Friedrich, B.: Numerical simulation of the twin-roll casting process of magnesium alloy strip. J. Mater. Process. Technol. 209, 2321–2328 (2009).  https://doi.org/10.1016/J.JMATPROTEC.2008.05.032CrossRefGoogle Scholar
  17. 17.
    Nimbulkar, S.L., Dalu, R.S.: Design optimization of gating and feeding system through simulation technique for sand casting of wear plate. Perspect. Sci. 8, 39–42 (2016).  https://doi.org/10.1016/J.PISC.2016.03.001CrossRefGoogle Scholar
  18. 18.
    Kermanpur, A., Mahmoudi, S., Hajipour, A.: Numerical simulation of metal flow and solidification in the multi-cavity casting moulds of automotive components. J. Mater. Process. Technol. 206, 62–68 (2008).  https://doi.org/10.1016/J.JMATPROTEC.2007.12.004CrossRefGoogle Scholar
  19. 19.
    Krimpenis, A., Benardos, P.G., Vosniakos, G.-C., Koukouvitaki, A.: Simulation-based selection of optimum pressure die-casting process parameters using neural nets and genetic algorithms. Int. J. Adv. Manuf. Technol. 27, 509–517 (2006).  https://doi.org/10.1007/s00170-004-2218-0CrossRefGoogle Scholar
  20. 20.
    Dabade, U.A., Bhedasgaonkar, R.C.: Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique. Procedia CIRP 7, 616–621 (2013).  https://doi.org/10.1016/J.PROCIR.2013.06.042CrossRefGoogle Scholar
  21. 21.
    Keste, A.A., Gawande, S.H., Sarkar, C.: Design optimization of precision casting for residual stress reduction. J. Comput. Des. Eng. 3, 140–150 (2016).  https://doi.org/10.1016/J.JCDE.2015.10.003CrossRefGoogle Scholar
  22. 22.
    Jolly, M., Dai, X., Zeng, B.: Energy saving in the foundry industry by using the CRIMSON single shot up-casting process. Foundry Trade J. Int. 186, 317–324 (2012)Google Scholar
  23. 23.
    Ali, F., Tzanidakis, K., Goulos, I., et al.: Multi-objective optimization of conceptual rotorcraft powerplants: trade-off between rotorcraft fuel efficiency and environmental impact. J. Eng. Gas Turbines Power 137, 071201 (2015).  https://doi.org/10.1115/1.4029103CrossRefGoogle Scholar
  24. 24.
    Ali, F., Tzanidakis, K., Goulos, I., et al.: Multi-objective optimization of a regenerative rotorcraft powerplant: trade-off between overall engine weight and fuel economy. J. Eng. Gas Turbines Power 137, 121201 (2015).  https://doi.org/10.1115/1.4030634CrossRefGoogle Scholar
  25. 25.
    FLOW-3D|CFD software|Multiphysics Modeling|Numerical Simulation. https://www.flow3d.com/
  26. 26.
    Powell, M.J.D., Buhmann, M.D.: Approximation Theory and Optimization: Tributes to M.J.D. Powell. Cambridge University Press, Cambridge (1997)Google Scholar
  27. 27.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002).  https://doi.org/10.1109/4235.996017CrossRefGoogle Scholar
  28. 28.
    Platypus - Multiobjective Optimization in Python — Platypus documentation. http://platypus.readthedocs.io/en/latest/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michail Papanikolaou
    • 1
  • Emanuele Pagone
    • 1
  • Konstantinos Salonitis
    • 1
  • Mark Jolly
    • 1
  • Charalampos Makatsoris
    • 1
  1. 1.Sustainable Manufacturing Systems CentreCranfield UniversityCranfieldUK

Personalised recommendations