Ultraviolet and Visible Photodetection Using 3C-SiC/Si Hetero-Epitaxial Junction

  • Abu Riduan Md FoisalEmail author
  • Toan Dinh
  • Philip Tanner
  • Hoang-Phuong Phan
  • Tuan-Khoa Nguyen
  • Alan Iacopi
  • Erik W. Streed
  • Dzung Viet Dao
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)


This paper demonstrates the prospect of using a 3C-SiC/Si heterostructure as an ultraviolet and visible photodetector. The heterojunction has been grown epitaxially on Si-substrate via a Low Pressure Chemical Vapor Deposition technique at 1000 °C. The detector shows a good diode characteristic with a rectification ratio of 1.03 × 103 and a reverse leakage current of 7.2 × 10−6 A at 2 V in dark conditions. The responsivity of the device is found to be 5.4 × 10−2 A/W and 3.18 × 10−2 A/W at a reverse bias of 2 V under visible (635 nm) and UV (375 nm) illumination, respectively. An energy band diagram is proposed to explain the photosensitivity of the heterostructure.


3C-SiC/si heterojunction Responsivity UV-visible light Band diagram 


  1. 1.
    Zhang, F., Ding, Y., Zhang, Y., Zhang, X., Wang, Z.L.: Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 6(10), 9229–9236 (2012)CrossRefGoogle Scholar
  2. 2.
    Fang, X., Bando, Y., Liao, M., Gautam, U.K., Zhi, C., Dierre, B., Liu, B., Zhai, T., Sekiguchi, T., Koide, Y., Golberg, D.: Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21(20), 2034–2039 (2009)CrossRefGoogle Scholar
  3. 3.
    Ohta, H., Kamiya, M., Kamiya, T., Hirano, M., Hosono, H.: UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin Solid Films 445(2), 317–321 (2003)CrossRefGoogle Scholar
  4. 4.
    Mridha, S., Basak, D.: Ultraviolet and visible photoresponse properties of n-Zn O∕ p-Si heterojunction. J. Appl. Phys. 101(8), 083102 (2007)CrossRefGoogle Scholar
  5. 5.
    Elfadill, N.G., Hashim, M.R., Saron, K.M.A., Chahrour, K.M., Qaeed, M.A., Bououdina, M.: Ultraviolet–visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate. Mater. Chem. Phys. 156, 54–60 (2015)CrossRefGoogle Scholar
  6. 6.
    Fang, Y.K., Hwang, S.B., Chen, K.H., Liu, C.R., Tsai, M.J., Kuo, L.C.: An amorphous SiC/Si heterojunction pin diode for low-noise and high-sensitivity UV detector. IEEE Trans. Electron Devices 39(2), 292–296 (1992)CrossRefGoogle Scholar
  7. 7.
    Foisal, A.R.M., Qamar, A., Phan, H.-P., Dinh, T., Tuan, K.N., Tanner, P., Streed, E.W., Dao, D.V.: Pushing the limits of piezoresistive effect by optomechanical coupling in 3C-SiC/Si heterostructure. ACS Appl. Mater. Interfaces. 9(46), 39921–39925 (2017)CrossRefGoogle Scholar
  8. 8.
    Nguyen, T.-K., Phan, H.-P., Dinh, T., Han, J., Dimitrijev, S., Tanner, P., Foisal, A.R.M., Zhu, Y., Nguyen, N.-T., Dao, D.V.: Experimental investigation of piezoresistive effect in p-type 4H–SiC. IEEE Electron Device Lett. 38(7), 955–958 (2017)CrossRefGoogle Scholar
  9. 9.
    Nguyen, T.-K., Phan, H.-P., Han, J., Dinh, T., Foisal, A.R.M., Dimitrijev, S., Zhu, Y., Nguyen, N.-T., Dao, D.V.: Highly sensitive p-type 4H-SiC van der Pauw sensor. RSC Adv. 8(6), 3009–3013 (2018)CrossRefGoogle Scholar
  10. 10.
    Qamar, A., Tanner, P., Dao, D.V., Phan, H.-P., Dinh, T.: Electrical properties of p-type 3C-SiC/Si heterojunction diode under mechanical stress. IEEE Electron Device Lett. 35(12), 1293–1295 (2014)CrossRefGoogle Scholar
  11. 11.
    Phan, H.-P., Cheng, H.H., Dinh, T., Wood, B., Nguyen, T.-K., Mu, F., Kamble, H., Vadivelu, R., Walker, G., Hold, L., Iacopi, A., et al.: Single-Crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications. ACS Appl. Mater. Interfaces. 9(33), 27365–27371 (2017)CrossRefGoogle Scholar
  12. 12.
    Foisal, A.R.M., Phan, H.-P., Kozeki, T., Dinh, T., Tuan, K.-N., Qamar, A., Lobino, M., Namazu, T., Dao, D.V.: 3C-SiC on glass: an ideal platform for temperature sensors under visible light illumination. RSC Adv. 6(90), 87124–87127 (2016)CrossRefGoogle Scholar
  13. 13.
    Phan, H.-P., Dinh, T., Kozeki, T., Nguyen, T.-K., Qamar, A., Namazu, T., Nguyen, N.-T., Dao, D.V.: Nano strain-amplifier: Making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Appl. Phys. Lett. 109(12), 123502 (2016)CrossRefGoogle Scholar
  14. 14.
    Phan, H.-P., Dao, D.V., Tanner, P., Wang, L., Nguyen, N.-T., Zhu, Y., Dimitrijev, S.: Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl. Phys. Lett. 104(11), 111905 (2014)CrossRefGoogle Scholar
  15. 15.
    Phan, H.-P., Dao, D.V., Wang, L., Dinh, T., Nguyen, N.-T., Qamar, A., Tanner, P., Dimitrijev, S., Zhu, Y.: The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. J. Mater. Chem. C 3(6), 1172–1176 (2015)CrossRefGoogle Scholar
  16. 16.
    Young, D.J., Du, J., Zorman, C.A., Ko, W.H.: High-temperature single-crystal 3C-SiC capacitive pressure sensor. IEEE Sens. J. 4(4), 464–470 (2004)CrossRefGoogle Scholar
  17. 17.
    Phan, H.-P., Nguyen, T.-K., Dinh, T., Iacopi, A., Hold, L., Shiddiky, M. J., Dao, D. V., Nguyen, N.-T.: Robust free‐standing nano‐thin SiC membranes enable direct photolithography for MEMS sensing applications. Adv. Eng. Mater. 20(1) (2018)Google Scholar
  18. 18.
    Phan, H.-P., Dao, D.V., Tanner, P., Han, J., Nguyen, N.-T., Dimitrijev, S., Walker, G., Wang, L., Zhu, Y.: Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films. J. Mater. Chem. C 2(35), 7176–7179 (2014)CrossRefGoogle Scholar
  19. 19.
    Massoubre, D., Wang, L., Hold, L., Fernandes, A., Chai, J., Dimitrijev, S., Iacopi, A.: Vertically conductive single-crystal SiC-based Bragg reflector grown on Si wafer. Sci. Rep. 5, 17026 (2015)CrossRefGoogle Scholar
  20. 20.
    Nishino, S., Powell, J.A., Will, H.A.: Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett. 42(5), 460–462 (1983)CrossRefGoogle Scholar
  21. 21.
    Anzalone, R., Litrico, G., Piluso, N., Reitano, R., Alberti, A., Fiorenza, P., Coffa, S., La Via, F.: Carbonization and transition layer effects on 3C-SiC film residual stress. J. Crystal Growth 473, 11–19 (2017)CrossRefGoogle Scholar
  22. 22.
    Chaudhry, M.I.: Electrical transport properties of crystalline silicon carbide/silicon heterojunctions. IEEE Electron Device Lett. 12(12), 670–672 (1991)CrossRefGoogle Scholar
  23. 23.
    Tanner, P., Dimitrijev, S., Harrison, H.B.: Current mechanisms in n-SiC/p-Si heterojunctions. In: Proceedings of the 2008, Conference on Optoelectronic and Microelectronic Materials and Devices, pp. 41–43 (2008)Google Scholar
  24. 24.
    Perzolt, J., Foster, C., Weih, P., Masri, P.: Electrical characterization of SiC/Si heterostructures with Ge-modified interfaces. Appl. Surf. Sci. 184(1–4), 79–83 (2001)Google Scholar
  25. 25.
    Monroy, E., Omnès, F., Calle, F.: Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18(4), 33 (2003)CrossRefGoogle Scholar
  26. 26.
    Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M.: Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76(3), 1363–1398 (1994)CrossRefGoogle Scholar
  27. 27.
    Wang, L., Dimitrijev, S., Han, J., Iacopi, F., Zou, J.: Transition between amorphous and crystalline phases of SiC deposited on Si substrate using H3SiCH3. J. Cryst. Growth 311, 4442–4446 (2009)CrossRefGoogle Scholar
  28. 28.
    Dao, D.V., Phan, H.-P., Qamar, A., Dinh, T.: Piezoresistive effect of p-type single crystalline 3C–SiC on (111) plane. RSC Adv. 6(26), 21302–21307 (2016)CrossRefGoogle Scholar
  29. 29.
    Tanner, P., Iacopi, A., Phan, H.-P., Dimitrijev, S., Hold, L., Chaik, K., Walker, G., Dao, D.V., Nguyen, N.T.: Excellent rectifying properties of the n-3C-SiC/p-Si heterojunction subjected to high temperature annealing for electronics, MEMS, and LED applications. Sci. Rep. 7(1), 17734 (2017)CrossRefGoogle Scholar
  30. 30.
    Sze, S.M., Ng, K.K.: Physics of Semiconductor Devies. John Wiley & Sons, New York (2007)Google Scholar
  31. 31.
    Afanas’ev, V.V., Bassler, M., Pensl, G., Schulz, M.J., Stein von Kamienski, E.: Band offsets and electronic structure of SiC/SiO2 interfaces. J. Appl. Phys. 79(6), 3108–3114 (1996)CrossRefGoogle Scholar
  32. 32.
    Qamar, A., Dao, D.V., Tanner, P., Phan, H.-P., Dinh, T., Dimitrijev, S.: Influence of external mechanical stress on electrical properties of single-crystal n-3C-SiC/p-Si heterojunction diode. Appl. Phys. Express 8(6), 061302 (2015)CrossRefGoogle Scholar
  33. 33.
    Sethi, V.K., Pandey, M., Shukla, M.P.: Use of nanotechnology in solar PV cell. Int. J. Chem. Eng. Appl. 2(2), 77–80 (2011)Google Scholar
  34. 34.
    Yang, Q., Guo, X., Wang, W., Zhang, Y., Xu, S., Lien, D.H., Wang, Z.L.: Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4(10), 6285–6291 (2010)CrossRefGoogle Scholar
  35. 35.
    Seyedi, M.A., Yao, M., O’Brien, J., Wang, S.Y., Dapkus, P.D.: Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction. Appl. Phys. Lett. 103(25), 251109 (2013)CrossRefGoogle Scholar
  36. 36.
    Dentan, M., de Cremoux, B.A.U.D.O.U.I.N.: Numerical simulation of the nonlinear response of a pin photodiode under high illumination. J. Lightwave Technol. 8(8), 1137–1144 (1990)CrossRefGoogle Scholar
  37. 37.
    Li, Z., Pan, H., Chen, H., Beling, A., Campbell, J.C.: High-saturation-current modified uni-traveling-carrier photodiode with cliff layer. IEEE J. Quantum Electron. 46(5), 626–632 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abu Riduan Md Foisal
    • 1
    Email author
  • Toan Dinh
    • 1
  • Philip Tanner
    • 1
  • Hoang-Phuong Phan
    • 1
  • Tuan-Khoa Nguyen
    • 1
  • Alan Iacopi
    • 1
  • Erik W. Streed
    • 2
    • 3
  • Dzung Viet Dao
    • 1
    • 4
  1. 1.Queensland Micro-Nanotechnology CentreGriffith UniversityBrisbaneAustralia
  2. 2.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  3. 3.Institute of GlycomicsGriffith UniversitySouthport, Gold CoastAustralia
  4. 4.School of EngineeringGriffith UniversitySouthport, Gold CoastAustralia

Personalised recommendations