Advertisement

Carbon Nanotube Four-Terminal Devices for Pressure Sensing Applications

  • Toan DinhEmail author
  • Tuan-Khoa Nguyen
  • Hoang-Phuong Phan
  • Canh-Dung Tran
  • Van Dau
  • Nam-Trung Nguyen
  • Dzung Viet Dao
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)

Abstract

Carbon nanotubes (CNTs) are of high interest for sensing applications, owing to their superior mechanical strength, high Young’s modulus and low density. In this work, we report on a facile approach for the fabrication of carbon nanotube devices using a four terminal configuration. Oriented carbon nanotube films were pulled out from a CNT forest wafer and then twisted into a yarn. Both the CNT film and yarn were arranged on elastomer membranes/diaphragms which were arranged on a laser cut acrylic frame to form pressure sensors. The sensors were calibrated using a precisely controlled pressure system, showing a large change of the output voltage of approximately 50 mV at a constant supply current of 100 µA and under a low applied pressure of 15 mbar. The results indicate the high potential of using CNT films and yarns for pressure sensing applications.

Keywords

Carbon nanotube Pressure sensor Flexible/stretchable devices 

Notes

Acknowledgment

This work was performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and micro-fabrication facilities for Australia’s researchers. Toan Dinh acknowledges the support from 2017 Griffith Early Career Researcher Travel Grant.

References

  1. 1.
    Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes–the route toward applications. Science 297(5582), 787–792 (2002)CrossRefGoogle Scholar
  2. 2.
    O’connell, M.J.: Carbon Nanotubes: Properties and Applications. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  3. 3.
    Dinh, T., Phan, H.P., Qamar, A., Woodfield, P., Nguyen, N.T., Dao, D.V.: Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26(5), 966–986 (2017)CrossRefGoogle Scholar
  4. 4.
    Nguyen, T.K., Dinh, T., Phan, H.P., Tran, C.D., Foisal, A.R.M., Zhu, Y., Dao, D.V.: Electrically stable carbon nanotube yarn under tensile strain. IEEE Electron Device Lett. 38(9), 1331–1334 (2017)CrossRefGoogle Scholar
  5. 5.
    Dinh, T., Nguyen, T.K., Phan, H.P., Fastier-Wooller, J., Tran, C.D., Dao, D.V.: Fabrication of a sensitive pressure sensor using carbon nanotube micro-yarns. In: 2017 IEEE Sensors Proceedings (2017)Google Scholar
  6. 6.
    Tans, S.J., Verschueren, A.R., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49 (1998)CrossRefGoogle Scholar
  7. 7.
    Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E.: Electronic structure control of single-walled carbon nanotube functionalization. Science 301(5639), 1519–1522 (2003)CrossRefGoogle Scholar
  8. 8.
    Dinh, T., Phan, H.P., Nguyen, T.K., Qamar, A., Foisal, A.R.M., Viet, T.N., Tran, C.D., Zhu, Y., Nguyen, N.T., Dao, D.V.: Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4(42), 10061–10068 (2016)CrossRefGoogle Scholar
  9. 9.
    Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296 (2011)CrossRefGoogle Scholar
  10. 10.
    Amjadi, M., Yoon, Y.J., Park, I.: Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology 26(37), 375501 (2015)CrossRefGoogle Scholar
  11. 11.
    Ryu, S., Lee, P., Chou, J.B., Xu, R., Zhao, R., Hart, A.J., Kim, S.G.: Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6), 5929–5936 (2015)CrossRefGoogle Scholar
  12. 12.
    Dinh, T., Nguyen, T.-K., Phan, H.-P., Jarred, F.-W., Tran, C.D., Nguyen, N.-T., Dao, D.V.: Electrical resistance of carbon nanotube yarns under compressive transverse pressure. IEEE Electron Device Lett. (2018, Accepted)Google Scholar
  13. 13.
    Dau, V.T., Tran, C.D., Bui, T.T., Nguyen, V.D.X., Dinh, T.X.: Piezo-resistive and thermo-resistance effects of highly-aligned CNT based macrostructures. RSC Adv. 6(108), 106090–106095 (2016)CrossRefGoogle Scholar
  14. 14.
    Colasanti, S., Robbiano, V., Loghin, F.C., Abdelhalim, A., Bhatt, V.D., Abdellah, A., Cacialli, F., Lugli, P.: Experimental and computational study on the temperature behavior of CNT networks. IEEE Trans. Nanotechnol. 15(2), 171–178 (2016)CrossRefGoogle Scholar
  15. 15.
    Kim, S.Y., Park, S., Park, H.W., Park, D.H., Jeong, Y., Kim, D.H.: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhang, Q., Liu, L., Zhao, D., Duan, Q., Ji, J., Jian, A., Zhang, W., Sang, S.: Highly Sensitive and Stretchable Strain Sensor Based on Ag@ CNTs. Nanomaterials 7(12), 424 (2017)CrossRefGoogle Scholar
  17. 17.
    Maddipatla, D., Narakathu, B.B., Ali, M.M., Chlaihawi, A.A., Atashbar, M.Z.: Development of a novel carbon nanotube based printed and flexible pressure sensor. In: Sensors Applications Symposium (SAS), 2017 IEEE, pp. 1–4. IEEE (2017)Google Scholar
  18. 18.
    Haniff, M.A.S.M., Lee, H.W., Bien, D.C.S., Teh, A.S., Azid, I.A.: Highly sensitive integrated pressure sensor with horizontally oriented carbon nanotube network. Nanoscale Res. Lett. 9(1), 49 (2014)CrossRefGoogle Scholar
  19. 19.
    Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 48(4), 1105–1115 (2010)CrossRefGoogle Scholar
  20. 20.
    Hawkins, S.C., Poole, J.M., Huynh, C.P.: Catalyst distribution and carbon nanotube morphology in multilayer forests by mixed CVD processes. J. Phys. Chem. C 113(30), 12976–12982 (2009)CrossRefGoogle Scholar
  21. 21.
    Tran, C.D., Humphries, W., Smith, S.M., Huynh, C., Lucas, S.: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47(11), 2662–2670 (2009)CrossRefGoogle Scholar
  22. 22.
    Bao, M.: Analysis and Design Principles of MEMS Devices. Elsevier, UK (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Toan Dinh
    • 1
    Email author
  • Tuan-Khoa Nguyen
    • 1
  • Hoang-Phuong Phan
    • 1
  • Canh-Dung Tran
    • 2
  • Van Dau
    • 3
  • Nam-Trung Nguyen
    • 1
  • Dzung Viet Dao
    • 1
  1. 1.Griffith UniversityQueenslandAustralia
  2. 2.University of Southern QueenslandQueenslandAustralia
  3. 3.Sumitomo Chemical. LtdHyogoJapan

Personalised recommendations