Low-Cost Multifunctional Ionic Liquid Pressure and Temperature Sensor

  • Jarred Fastier-WoollerEmail author
  • Ryuta Yoshikawa
  • Toan Dinh
  • Van Dau
  • Hoang-Phuong Phan
  • Adrian Teo
  • Say Hwa Tan
  • Dzung Viet Dao
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)


Design and implementation of sensing devices have been driven by the need for high sensitivity, low cost, and simple fabrication. Ionic liquids have some desirable properties for soft sensor design in terms of their volatility and conductivity. By applying low cost and simple fabrication methods, we present a multifunctional pressure and temperature sensor. Preliminary results show a sensitivity of 0.24 × 10−3 kPa−1 and −17,000 ppm/K for pressure and temperature respectively. Showing high promise for the presented ionic liquid in soft sensor design. Further investigation into the measuring method, structure, and working principle of the materials involved could provide a higher quality multimodal and multifunctional device.


Pressure and temperature transducer Ionic liquid BMIM BF4 



This work was performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and micro-fabrication facilities for Australia’s researchers.


  1. 1.
    Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13(3), 351–359 (1978)CrossRefGoogle Scholar
  2. 2.
    Ma, Z., et al.: Liquid-wetting-solid strategy to fabricate stretchable sensors for human-motion detection. Acs Sens. 1(3), 303–311 (2016)CrossRefGoogle Scholar
  3. 3.
    Frutiger, A., et al.: Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27(15), 2440–2446 (2015)CrossRefGoogle Scholar
  4. 4.
    Shin, H.-S., Ryu, J., Majidi, C., Park, Y.-L.: Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres. J. Micromech. Microeng. 26(2), 025011 (2016)CrossRefGoogle Scholar
  5. 5.
    White, E.L., Case, J.C., Kramer, R.K.: Multi-element strain gauge modules for soft sensory skins. IEEE Sens. J. 16(8), 2607–2616 (2016)CrossRefGoogle Scholar
  6. 6.
    Yeo, J.C., Yu, J., Koh, Z.M., Wang, Z., Lim, C.T.: Wearable tactile sensor based on flexible microfluidics. Lab Chip 16(17), 3244–3250 (2016)CrossRefGoogle Scholar
  7. 7.
    Yoon, S.G., Koo, H.-J., Chang, S.T.: Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl. Mater. Interfaces 7(49), 27562–27570 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhu, Y., Chao, C., Cheng, C.-H., Leung, W.W.-F.: A novel ionic-liquid strain sensor for large-strain applications. IEEE Electron Device Lett. 30(4), 337–339 (2009)CrossRefGoogle Scholar
  9. 9.
    Lipomi, D.J., et al.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788 (2011)CrossRefGoogle Scholar
  10. 10.
    Phan, H.-P., Dao, D.V., Nakamura, K., Dimitrijev, S., Nguyen, N.-T.: The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J. Microelectromech. Syst. 24(6), 1663–1677 (2015)CrossRefGoogle Scholar
  11. 11.
    Sigma Aldrich 1-butyl-3-methylimidazolium tetrafluoroborate product page.
  12. 12.
    Dinh, T., et al.: Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8(6), 061303 (2015)CrossRefGoogle Scholar
  13. 13.
    Dinh, T., Phan, H.-P., Qamar, A., Woodfield, P., Nguyen, N.-T., Dao, D.V.: Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26(5), 966–986 (2017)CrossRefGoogle Scholar
  14. 14.
    Kuo, J.T., Yu, L., Meng, E.: Micromachined thermal flow sensors—A review. Micromachines 3(3), 550–573 (2012)CrossRefGoogle Scholar
  15. 15.
    Brookes, R., Davies, A., Ketwaroo, G., Madden, P.A.: Diffusion coefficients in ionic liquids: Relationship to the viscosity. J. Phys. Chem. B 109(14), 6485–6490 (2005)CrossRefGoogle Scholar
  16. 16.
    Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J.: Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J. Chem. Eng. Data 55(5), 1784–1788 (2009)CrossRefGoogle Scholar
  17. 17.
    Kariuki, S., Dewald, H.D.: Evaluation of diffusion coefficients of metallic ions in aqueous solutions. Electroanalysis 8(4), 307–313 (1996)CrossRefGoogle Scholar
  18. 18.
    Thoms, E., Sippel, P., Reuter, D., Weiß, M., Loidl, A., Krohns, S.: Dielectric study on mixtures of ionic liquids. Sci. Rep. 7(1), 7463 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jarred Fastier-Wooller
    • 1
    Email author
  • Ryuta Yoshikawa
    • 2
  • Toan Dinh
    • 1
    • 3
  • Van Dau
    • 4
  • Hoang-Phuong Phan
    • 1
    • 3
  • Adrian Teo
    • 1
    • 3
  • Say Hwa Tan
    • 1
    • 3
  • Dzung Viet Dao
    • 1
    • 3
  1. 1.School of Engineering and Built EnvironmentGriffith UniversitySouthportAustralia
  2. 2.Graduate School of Science and EngineeringRitsumeikan UniversityShigaJapan
  3. 3.QLD Micro-and Nanotechnology CentreGriffith UniversityBrisbaneAustralia
  4. 4.Research Group of Environmental HealthSumitomo Chemical. Ltd.HyogoJapan

Personalised recommendations