Development of a Vibrating-Reed MEMS Charge Sensor on Silicon-on-Glass Technology

  • Jubayer JalilEmail author
  • Yong Zhu
  • Toan Dinh
  • Yong Ruan
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)


A new development of a charge sensor based on MEMS vibrating-reed has been proposed in this work. The proposed charge sensing device has been fabricated on silicon-on-glass (SOG) technology than its silicon-on-insulator (SOI) counterpart. For the read-out circuit, a non-inverting voltage-mode amplifier with high pass filter has been designed by an operational amplifier IC. The MEMS charge sensor prototype achieved an experimental sensitivity of 5.5 × 109 V/C (in air) with good linearity and improved resolution.


Charge sensor Silicon-on-glass MEMS Vibrating-reed 


  1. 1.
    Jaramillo, G., Horsley, D.A., Buffa, C., Langfelder, G.: A MEMS based electrometer with a low-noise switched reset amplifier for charge measurement. In: Proceedings of the 11th IEEE Sensors Conference, pp. 1–4 (2012)Google Scholar
  2. 2.
    Low Level Measurements Handbook 2004 Keithley (Cleveland 6th edition)Google Scholar
  3. 3.
    Jalil, J., Zhu, Y., Ekanayake, C., Ruan, Y.: Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28(14), 142002 (2017)CrossRefGoogle Scholar
  4. 4.
    Likharev, K.K.: Single electron devices and their applications. Proc. IEEE 87, 606–632 (1999)CrossRefGoogle Scholar
  5. 5.
    Cleland, A.N., Roukes, M.L.: A nanometer-scale mechanical electrometer. Nature 392, 160–162 (1998)CrossRefGoogle Scholar
  6. 6.
    Chen, D., Zhao, J., Wang, Y., Xie, J.: An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27(6), 065002 (2017)CrossRefGoogle Scholar
  7. 7.
    Zhu, Y., Lee, J., Seshia, A.: System-level simulation of a micromachined electrometer using a time-domain variable capacitor circuit model. J. Micromech. Microeng. 17(5), 1059–1065 (2007)CrossRefGoogle Scholar
  8. 8.
    Zhu, Y., Lee, J.E.Y., Seshia, A.A.: A resonant micromachined electrostatic sensor. IEEE Sensors J. 8(9), 1499–1505 (2008)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Zhu, Y., Seshia, A.: Room temperature electrometry with SUB-10 electron charge resolution. J. Micromech. Microeng. 18(2), 025033 (2008)CrossRefGoogle Scholar
  10. 10.
    Lee, J.E.Y., Zhu, Y., Seshia, A.A.: A micromechanical electrometer approaching single-electron charge resolution at room temperature. In: Proceedings of the IEEE 21st International Conference on MEMS, pp. 948–951 (2008)Google Scholar
  11. 11.
    Zhu, Y., Lee, J., Seshia, A.: Sub-10e charge resolution for room temperature electrometry. In: IEEE Sensors Conference, pp. 821–824 (2007)Google Scholar
  12. 12.
    Zhu, Y., Lee, J., and Seshia, A.: MEMS electrometer system simulation using a time-domain variable capacitor model. In: Proceedings of the 14th IEEE Transducers, pp. 1685–1688 (2007)Google Scholar
  13. 13.
    Riehl, P.S., Scott, K.L., Muller, R.S., Howe, R.T., Yasaitis, J.A.: Electrostatic charge and field sensors based on micromechanical resonators. J. Microelectromech. Syst. 12(5), 577–589 (2003)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Chen, D., Zhao, J., Wang, Y., Xu, Z., Xie, J.: Sensitivity manipulation on micro-machined resonant electrometer toward high resolution and large dynamic range. Appl. Phys. Lett. 112(1), 013502 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Griffith UniversityGold CoastAustralia
  2. 2.Tsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations