Unified Access to Heterogeneous Data Sources Using an Ontology

  • Daniel MercierEmail author
  • Hyunmin Cheong
  • Chaitanya Tapaswi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11341)


The rise of cloud computing started a transition for software applications from local to remote infrastructures. This migration created an opportunity to aggregate and consolidate analogous data content. However, this data content usually come with very different data structures and data terminologies and is usually tightly coupled to one or more applications. With these disparities and restrictions, the analogous data ends up both centrally stored but spread over several disconnected heterogeneous data sources. In this article, we present an approach to aggregate data sources using live data consolidation. The approach preserves the original data sources; and by doing so, prevents associated applications from having to migrate to a new data source. The approach uses an ontology at its core to serve as a common semantic ground between data sources and leverage its stored knowledge to expand query capabilities.


Ontology Databases Aggregation Consolidation Standardization Query expansion Materials 


  1. 1.
    Ali, M.G.: A multidatabase system as 4-tiered client-server distributed heterogeneous database system. Int. J. Comput. Sci. Inf. Secur. 6(2), 10–14 (2009)MathSciNetGoogle Scholar
  2. 2.
    Ashino, T.: Materials ontology: an infrastructure for exchanging materials information and knowledge. Data Sci. J. 9, 54–61 (2010)CrossRefGoogle Scholar
  3. 3.
    Berners-lee, T., Hendler, J., Lassila, O.: The semantic web: a new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284(5) (2001)CrossRefGoogle Scholar
  4. 4.
    Cheung, K., Drennan, J., Hunter, J.: Towards an ontology for data-driven discovery of new materials. In: Semantic Scientific Knowledge Integration AAAI/SSS Workshop, pp. 9–14. Stanford University, Palo Alto (2008)Google Scholar
  5. 5.
    Duong, L., Kanayama, H., Ma, T., Bird, S., Cohn, T.: Multilingual training of crosslingual word embeddings. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pp. 894–904 (2017)Google Scholar
  6. 6.
    Jurafsky, D., Martin, J.H.: Speech and language processing.
  7. 7.
    Konstantopoulos, S., Charalambidis, A., Mouchakis, G., Troumpoukis, A., Jakobitch, J., Karkaletsis, V.: Semantic web technologies and big data infrastructures: SPARQL federated querying of heterogeneous big data stores. In: International Semantic Web Conference (2016)Google Scholar
  8. 8.
    Liu, Z., Calve, A.L., Cretton, F., Glassey, N.: Using semantic web technologies in heterogeneous distributed database system a case study for managing energy data on mobile devices. Int. J. New Comput. Archit. Appl. 4(2), 56–59 (2014)Google Scholar
  9. 9.
    Mecca, G., Rull, G., Santoro, D., Teniente, E.: Semantic-based mappings. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 255–269. Springer, Heidelberg (2013). Scholar
  10. 10.
    Muzny, G., Zettlemoyer, L.S.: Automatic idiom identification in wiktionary. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1417–1421 (2013)Google Scholar
  11. 11.
    Noaman, A., Essia, F., Salah, M.: Web services based integration tool for heterogeneous databases. Int. J. Res. Eng. Sci. 1(3), 16–26 (2013)CrossRefGoogle Scholar
  12. 12.
    Premkumar, V., Krishamurty, S., Wileden, J.C., Grosse, I.R.: A semantic knowledge management system for laminated composites. Adv. Eng. Inform. 28, 91–101 (2014)CrossRefGoogle Scholar
  13. 13.
    Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 19–35. Springer, Cham (2015). Scholar
  14. 14.
    van der Vet, P.E., Speel, P.H., Mars, N.J.: The Plinius ontology of ceramic materials. In: Proceedings of Comparison of Implemented Ontologies Workshop (1994)Google Scholar
  15. 15.
    Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2108, pp. 5511–5519 (2018)Google Scholar
  16. 16.
    Zhang, R., Wang, J., Bu, W.: Research on attribute matching method in heterogeneous databases semantic integration. J. Chem. Pharm. Res. 7(3), 16–26 (2015)Google Scholar
  17. 17.
    Zhao, S., Qian, Q.: Ontology based heterogeneous materials database integration and semantic query. AIP Adv. 7(10) (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniel Mercier
    • 1
    Email author
  • Hyunmin Cheong
    • 1
  • Chaitanya Tapaswi
    • 2
  1. 1.Autodesk ResearchTorontoCanada
  2. 2.AutodeskSan FranciscoUSA

Personalised recommendations