Making Complex Ontologies End User Accessible via Ontology Projections

  • Ahmet SoyluEmail author
  • Evgeny Kharlamov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11341)


Ontologies are a powerful mechanism to structure domains of interest. They have successfully been applied in medical domain, industry and other important areas. Despite the simplicity of ontological vocabularies that consist of classes and properties, ontologies can relate elements of the vocabulary with the help of axioms in a very non-trivial way. Thus, the relationship between classes and properties can become hardly accessible by end users thus affecting the practical value of ontologies. Indeed, it is essential for end users to be able to navigate or browse through an ontology, to get a big picture of what classes there are and what they have in common in terms of other related classes and properties. This helps end users in effectively performing various knowledge engineering tasks such as querying and domain exploration. To this end, in this short paper, we describe an approach to project OWL 2 ontologies into graphs and show how to leverage this approach in practical systems for visual query formulation and faceted search that we tested in various scenarios.



This work is partially funded by EU H2020 TheyBuyForYou (780247) project. This research is supported by the EPSRC projects MaSI\(^3\), DBOnto, ED\(^3\), and by the SIRIUS Centre, Norwegian Research Council project number 237898.


  1. 1.
    Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted search over ontology-enhanced RDF data. In: CIKM, pp. 939–948 (2014)Google Scholar
  2. 2.
    Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted search over RDF-based knowledge graphs. J. Web Semant. 37–38, 55–74 (2016)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Biega, J., Kuzey, E., Suchanek, F.M.: Inside YAGO2s: a transparent information extraction architecture. In: Proceedings of the 22nd International Conference on World Wide Web (WWW 2013), pp. 325–328. ACM (2013)Google Scholar
  5. 5.
    Brunetti, J.M., García, R., Auer, S.: From overview to facets and pivoting for interactive exploration of semantic web data. Int. J. Semant. Web Inf. Syst. 9(1), 1–20 (2013)CrossRefGoogle Scholar
  6. 6.
    Grau, B.C., et al.: Towards query formulation, query-driven ontology extensions in OBDA systems. In: Proceedings of the 10th International Workshop on OWL: Experiences and Directions (OWLED 2013), CEUR Workshop Proceedings, vol. 1080. (2013)Google Scholar
  7. 7.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: The next step for OWL. J. Web Semant. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  8. 8.
    Heim, P., Ertl, T., Ziegler, J.: Facet graphs: complex semantic querying made easy. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 288–302. Springer, Heidelberg (2010). Scholar
  9. 9.
    Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)CrossRefGoogle Scholar
  10. 10.
    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.G.: Ontology visualization methods - a survey. ACM Comput. Surv. 39(4), 10 (2007)CrossRefGoogle Scholar
  11. 11.
    Kharlamov, E., et al.: Enabling semantic access to static and streaming distributed data with optique: demo. In: DEBS, pp. 350–353 (2016)Google Scholar
  12. 12.
    Kharlamov, E., et al.: Ontology-based integration of streaming and static relational data with optique. In: SIGMOD, pp. 2109–2112 (2016)Google Scholar
  13. 13.
    Kharlamov, E., Giacomelli, L., Sherkhonov, E., Grau, B.C., Kostylev, E.V., Horrocks, I.: Ranking, aggregation, and reachability in faceted search with semfacet. In: ISWC Posters & Demonstrations (2017)Google Scholar
  14. 14.
    Kharlamov, E.E., et al.: Ontology based access to exploration data at statoil. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 93–112. Springer, Cham (2015). Scholar
  15. 15.
    Kharlamov, E., et al.: Ontology based data access in statoil. J. Web Semant. 44, 3–36 (2017)CrossRefGoogle Scholar
  16. 16.
    Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens. J. Web Semant. 44, 54–74 (2017)CrossRefGoogle Scholar
  17. 17.
    Kharlamov, E., et al.: A semantic approach to polystores. In: IEEE BigData, pp. 2565–2573 (2016)Google Scholar
  18. 18.
    Kharlamov, E., et al.: Diagnostics of trains with semantic diagnostics rules. In: Riguzzi, F., Bellodi, E., Zese, R. (eds.) ILP 2018. LNCS (LNAI), vol. 11105, pp. 54–71. Springer, Cham (2018). Scholar
  19. 19.
    Kharlamov, E., et al.: Semantic rules for machine diagnostics: execution and management. In: CIKM, pp. 2131–2134 (2017)Google Scholar
  20. 20.
    Krivov, S., Williams, R., Villa, F.: GrOWL: a tool for visualization and editing of OWL ontologies. J. Web Semant. 5(2), 54–57 (2007)CrossRefGoogle Scholar
  21. 21.
    Lee, D., Cornet, R., Lau, F.Y., de Keizer, N.: A survey of SNOMED CT implementations. J. Biomed. Inf. 46(1), 87–96 (2013)CrossRefGoogle Scholar
  22. 22.
    Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  23. 23.
    Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semant. Web 7(4), 399–419 (2016)CrossRefGoogle Scholar
  24. 24.
    Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 314–333. Springer, Cham (2017). Scholar
  25. 25.
    Mehdi, G., et al.: SemDia: semantic rule-based equipment diagnostics tool. In: CIKM, pp. 2507–2510 (2017)Google Scholar
  26. 26.
    Motta, E., et al.: A novel approach to visualizing and navigating ontologies. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 470–486. Springer, Heidelberg (2011). Scholar
  27. 27.
    Sarker, M.K., Krisnadhi, A.A., Hitzler, P.: OWLAx: a Protege plugin to support ontology axiomatization through diagramming. In: Proceedings of the Posters & Demonstrations Track co-located with 15th International Semantic Web Conference (ISWC 2016), CEUR Workshop Proceedings, vol. 1690. (2016)Google Scholar
  28. 28.
    Sherkhonov, E., Cuenca Grau, B., Kharlamov, E., Kostylev, E.V.: Semantic faceted search with aggregation and recursion. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 594–610. Springer, Cham (2017). Scholar
  29. 29.
    Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.: A visual approach to semantic query design using a web-based graphical query designer. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 275–291. Springer, Heidelberg (2008). Scholar
  30. 30.
    Soylu, A., Giese, M., Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Ontology-based end-user visual query formulation: why, what, who, how, and which? Univers. Access Inf. Soc. 16(2), 435–467 (2017)CrossRefGoogle Scholar
  31. 31.
    Soylu, A., Giese, M., Jiménez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univers. Access Inf. Soc. 15(1), 129–152 (2016)CrossRefGoogle Scholar
  32. 32.
    Soylu, A., et al.: Querying industrial stream-temporal data: an ontology-based visual approach. J. Ambient Intell. Smart Environ. 9(1), 77–95 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry. Semant. Web 9(5), 627–660 (2018)CrossRefGoogle Scholar
  34. 34.
    Soylu, A., Mödritscher, F., Causmaecker, P.D.: Ubiquitous web navigation through harvesting embedded semantic data: a mobile scenario. Integr. Comput.-Aided Eng. 19(1), 93–109 (2012)CrossRefGoogle Scholar
  35. 35.
    Suchanek, F.M., Weikum, G.: Knowledge bases in the age of big data analytics. PVLDB 7(13), 1713–1714 (2014)Google Scholar
  36. 36.
    Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A.: PepeSearch: semantic data for the masses. PLoS One 11(3), e0151573 (2016)CrossRefGoogle Scholar
  37. 37.
    Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1), 55–74 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Norwegian University of Science and TechnologyGjøvikNorway
  2. 2.SINTEF DigitalOsloNorway
  3. 3.University of OxfordOxfordUK
  4. 4.University of OsloOsloNorway

Personalised recommendations