A Graph-Based Method for Interactive Mapping Revision

  • Weizhuo LiEmail author
  • Songmao Zhang
  • Guilin Qi
  • Xuefeng Fu
  • Qiu Ji
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11341)


Discovering semantic relations between heterogeneous ontologies is one of the key research topics in the Semantic Web. As the matching strategies adopted are largely heuristic, wrong mappings often exist in alignments generated by ontology matching systems. The mainstream methods for mapping revision deal with logical inconsistencies, so erroneous mappings not causing an inconsistency may be left out. Therefore, manual validations from domain experts are required. In this paper, we propose a graph-based method for interactive mapping revision with the purpose of reducing manual efforts as much as possible. Source ontologies are encoded into an integrated graph, where its mapping arcs are obtained by transforming mappings and will be evaluated by the expert. We specify the decision space for mapping revision and the corresponding operations that can be applied in the graph. After a human decision is made in each interaction, the mappings entailed by the manually confirmed ones are automatically approved. Conversely, those that would entail the rejected mappings or make the graph incoherent are declined. The whole update process modeled in the decision space can be done in polynomial time. Moreover, we define an impact function based on the integrated graph to identify the most influential mappings that will be displayed to the expert. In this way, the efforts of manual evaluation could be reduced further. The experiment on real-world ontology alignments shows that our method can save more decisions made by the expert than other revisions in most cases.



We thank the anonymous reviewers for their comments. This work was partially supported by the National Key Research and Development Program of China under grant 2016YFB1000902, the NSFC grants U1736204, 61621003, 61762063, 61602259, the Natural Science Foundation of Jiangxi 20171BAB202024, the fund from JiangXi Educational Committee GJJ170991.


  1. 1.
    Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)CrossRefGoogle Scholar
  2. 2.
    Meilicke, C.: Alignment incoherence in ontology matching. Ph.D. thesis, Universitätsbibliothek Mannheim (2011)Google Scholar
  3. 3.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013). Scholar
  4. 4.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011). Scholar
  5. 5.
    Santos, E., Faria, D., Pesquita, C., Couto, F.M.: Ontology alignment repair through modularization and confidence-based heuristics. PloS ONE 10(12), 1–19 (2015)Google Scholar
  6. 6.
    Castano, S., Ferrara, A., Lorusso, D., Näth, T.H., Möller, R.: Mapping validation by probabilistic reasoning. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 170–184. Springer, Heidelberg (2008). Scholar
  7. 7.
    Noessner, J., Niepert, M.: ELOG: a probabilistic reasoner for OWL EL. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 281–286. Springer, Heidelberg (2011). Scholar
  8. 8.
    Qi, G., Ji, Q., Haase, P.: A conflict-based operator for mapping revision. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 521–536. Springer, Heidelberg (2009). Scholar
  9. 9.
    Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Minimizing conservativity violations in ontology alignments: algorithms and evaluation. Knowl. Inf. Syst. 51(3), 775–819 (2017)CrossRefGoogle Scholar
  10. 10.
    Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using mappings: towards getting the right logical consequences. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187. Springer, Heidelberg (2009). Scholar
  11. 11.
    Jiménez-Ruiz, E., Payne, T.R., Solimando, A., Tamma, V.A.M.: Limiting logical violations in ontology alignnment through negotiation. In: KR, pp. 217–226. AAAI Press (2016)Google Scholar
  12. 12.
    Euzenat, J.: Interaction-based ontology alignment repair with expansion and relaxation. In: IJCAI, pp. 185–191. AAAI Press (2017)Google Scholar
  13. 13.
    Dragisic, Z., Ivanova, V., Lambrix, P., Faria, D., Jiménez-Ruiz, E., Pesquita, C.: User validation in ontology alignment. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 200–217. Springer, Cham (2016). Scholar
  14. 14.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Supporting manual mapping revision using logical reasoning. In: AAAI, pp. 1213–1218. AAAI Press (2008)Google Scholar
  15. 15.
    Nikitina, N., Rudolph, S., Glimm, B.: Interactive ontology revision. J. Web Semant. 12, 118–130 (2012)CrossRefGoogle Scholar
  16. 16.
    Fu, X., Qi, G., Zhang, Y., Zhou, Z.: Graph-based approaches to debugging and revision of terminologies in DL-Lite. Knowl.-Based Syst. 100, 1–12 (2016)CrossRefGoogle Scholar
  17. 17.
    Li, W., Zhang, S., Qi, G.: A graph-based approach for resolving incoherent ontology mappings. Web Intell. 16(1), 15–35 (2018)CrossRefGoogle Scholar
  18. 18.
    Calvanese, D., De Giacomo, G., Lemho, D., Lenzerini, M., Rosati, R.: DL-Lite: tractable description logics for ontologies. In: AAAI, pp. 602–607. AAAI Press (2005)Google Scholar
  19. 19.
    Lembo, D., Santarelli, V., Savo, D.F.: Graph-based ontology classification in OWL 2 QL. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 320–334. Springer, Heidelberg (2013). Scholar
  20. 20.
    Even, S.: Graph Algorithms. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  21. 21.
    Castano, S., Ferrara, A., Montanelli, S.: Dealing with matching variability of semantic web data using contexts. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 194–208. Springer, Heidelberg (2010). Scholar
  22. 22.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. J. Web Semant. 7(3), 235–251 (2009)CrossRefGoogle Scholar
  23. 23.
    Shchekotykhin, K., Friedrich, G.: Query strategy for sequential ontology debugging. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 696–712. Springer, Heidelberg (2010). Scholar
  24. 24.
    Rodler, P., Shchekotykhin, K., Fleiss, P., Friedrich, G.: RIO: minimizing user interaction in ontology debugging. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 153–167. Springer, Heidelberg (2013). Scholar
  25. 25.
    Euzenat, J.: Revision in networks of ontologies. Artif. Intell. 228, 195–216 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Weizhuo Li
    • 1
    • 2
    Email author
  • Songmao Zhang
    • 2
  • Guilin Qi
    • 1
  • Xuefeng Fu
    • 3
  • Qiu Ji
    • 4
  1. 1.School of Computer Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  3. 3.School of Information EngineeringNanchang Institute of TechnologyNanchangChina
  4. 4.School of Modern Posts and Institute of Modern PostsNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations