Skip to main content

Three Dimensional Einstein’s Gravity

  • Chapter
  • First Online:
Advanced Lectures on General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 952))

  • 2172 Accesses

Abstract

General Relativity is a very complex theory whose quantization remains elusive. A reduced version of the theory exists: 3-dimensional Einstein’s gravity to which this lecture is dedicated. As a toy-model, it is a very useful framework thanks to which we can experiment some techniques and derive features, some of which extend to the physical 4d case.

In this lecture, we will review the typical properties of 3d gravity, which are mostly due to the vanishing of the Weyl curvature. Next we will turn to the AdS 3 phase space: we will describe global features of AdS 3 itself, give several elements on the Brown-Henneaux boundary conditions and the resulting asymptotic symmetry group, and finally discuss BTZ black holes. We will show that the asymptotically flat phase space can be obtained from the flat limit of the asymptotically AdS 3 phase space. Finally, we will shortly present the Chern-Simons formulation of 3d gravity, which reduces the theory to the one of two non-abelian gauge vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the application defined by the system above, and which sends AdS 3 into \(\mathbb {R}^{(2,2)}\), is not injective, because it contains 2π-periodic functions of τ. So it wraps AdS 3 around \(\mathcal {H}\) an infinity of times. But locally the injectivity is however ensured, so we talk about immersion rather than embedding.

  2. 2.

    We save more detailed explanations for the lecture on 3d asymptotically flat spacetimes where conical defects also appear. Doing so we do not develop the same explanations twice!

References

  1. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986). http://dx.doi.org/10.1007/BF01211590

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200 [hep-th]; http://dx.doi.org/10.1023/A:1026654312961; http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1 [Adv. Theor. Math. Phys. 2, 231 (1998)]

  3. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111 [hep-th]; http://dx.doi.org/10.1016/S0370-1573(99)00083-6

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988). http://dx.doi.org/10.1016/0550-3213(88)90143-5

  5. A. Achucarro, P.K. Townsend, A Chern-Simons action for three-dimensional anti-de sitter supergravity theories. Phys. Lett. B 180, 89 (1986). http://dx.doi.org/10.1016/0370-2693(86)90140-1

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Banados, C. Teitelboim, J. Zanelli, The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099 [hep-th]; http://dx.doi.org/10.1103/PhysRevLett.69.1849

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Geometry of the (2+1) black hole. Phys. Rev. D 48(6), 1506–1525 (1993). arXiv:gr-qc/9302012 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.48.1506; http://dx.doi.org/10.1103/PhysRevD.88.069902

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Strominger, Black hole entropy from near horizon microstates. J. High Energy Phys. 02, 009 (1998). arXiv:hep-th/9712251 [hep-th]; http://dx.doi.org/10.1088/1126-6708/1998/02/009

  9. E. Witten, Three-dimensional gravity revisited (2007, Unpublished). http://arxiv.org/abs/0706.3359

  10. A. Maloney, E. Witten, Quantum gravity partition functions in three dimensions. J. High Energy Phys. 02, 029 (2010). arXiv:0712.0155 [hep-th]; http://dx.doi.org/10.1007/JHEP02(2010)029

  11. G. Compère, W. Song, A. Strominger, New boundary conditions for AdS3. J. High Energy Phys. 05, 152 (2013). arXiv:1303.2662 [hep-th]; http://dx.doi.org/10.1007/JHEP05(2013)152

  12. G. Barnich, G. Compère, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions. Class. Quant. Grav. 24, F15–F23 (2007). arXiv:gr-qc/0610130 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/24/5/F01; http://dx.doi.org/10.1088/0264-9381/24/11/C01

  13. G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. J. High Energy Phys. 1005, 062 (2010). arXiv:1001.1541 [hep-th]; http://dx.doi.org/10.1007/JHEP05(2010)062

  14. G. Barnich, A. Gomberoff, H.A. Gonzalez, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes. Phys. Rev. D 86, 024020 (2012). arXiv:1204.3288 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.86.024020

  15. B. Oblak, BMS particles in three dimensions. PhD thesis, Brussels U., 2016. arXiv:1610.08526 [hep-th]; http://dx.doi.org/10.1007/978-3-319-61878-4; http://inspirehep.net/record/1494790/files/arXiv:1610.08526.pdf

  16. D. Ida, No black hole theorem in three-dimensional gravity. Phys. Rev. Lett. 85, 3758–3760 (2000). arXiv:gr-qc/0005129 [gr-qc]; http://dx.doi.org/10.1103/PhysRevLett.85.3758

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions. J. High Energy Phys. 10, 095 (2012). arXiv:1208.4371 [hep-th]; http://dx.doi.org/10.1007/JHEP10(2012)095

  18. A. Bagchi, S. Detournay, R. Fareghbal, J. Simón, Holography of 3D flat cosmological horizons. Phys. Rev. Lett. 110(14), 141302 (2013). arXiv:1208.4372 [hep-th]; http://dx.doi.org/10.1103/PhysRevLett.110.141302

  19. S. Deser, R. Jackiw, G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space. Ann. Phys. 152, 220 (1984). http://dx.doi.org/10.1016/0003-4916(84)90085-X

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Deser, R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature. Ann. Phys. 153, 405–416 (1984). http://dx.doi.org/10.1016/0003-4916(84)90025-3

    Article  ADS  MathSciNet  Google Scholar 

  21. J. de Boer, J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3. J. High Energy Phys. 01, 023 (2014). arXiv:1302.0816 [hep-th]; http://dx.doi.org/10.1007/JHEP01(2014)023

  22. G. Compère, P. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS3 gravity: holographic vs boundary gravitons. J. High Energy Phys. 01, 080 (2016). arXiv:1511.06079 [hep-th]; http://dx.doi.org/10.1007/JHEP01(2016)080

  23. A. Ashtekar, J. Bicak, B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity. Phys. Rev. D 55, 669–686 (1997). arXiv:gr-qc/9608042 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.55.669

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Compère, A. Fiorucci, Asymptotically flat spacetimes with BMS3 symmetry. Class. Quant. Grav. 34(20), 204002 (2017). arXiv:1705.06217 [hep-th]; http://dx.doi.org/10.1088/1361-6382/aa8aad

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Compère, G. (2019). Three Dimensional Einstein’s Gravity. In: Advanced Lectures on General Relativity. Lecture Notes in Physics, vol 952. Springer, Cham. https://doi.org/10.1007/978-3-030-04260-8_2

Download citation

Publish with us

Policies and ethics