Advertisement

A Metadata Extractor for Books in a Digital Library

  • Sk. Simran Akhtar
  • Debarshi Kumar SanyalEmail author
  • Samiran Chattopadhyay
  • Plaban Kumar Bhowmick
  • Partha Pratim Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11279)

Abstract

Books form a significant part of the National Digital Library of India (NDLI). However, extracting metadata from these books is difficult owing to variations in style, graphic fonts, and use of background images. This paper presents a lightweight tool to automatically extract metadata from academic books. We also describe results of a preliminary evaluation of our tool on school books indexed in NDLI.

Keywords

Metadata extraction Digital Library Rule-based system 

Notes

Acknowledgements

This work is supported by Development of National Digital Library of India as a National Knowledge Asset of the Nation sponsored by Ministry of Human Resource Development, Government of India.

References

  1. 1.
    Constantin, A., Pettifer, S., Voronkov, A.: PDFX: fully-automated PDF-to-XML conversion of scientific literature. In: Proceedings of ACM Symposium on Document Engineering, pp. 177–180. ACM (2013)Google Scholar
  2. 2.
    Lopez, P.: GROBID: Combining automatic bibliographic data recognition and term extraction for scholarship publications. In: Agosti, M., Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 473–474. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04346-8_62CrossRefGoogle Scholar
  3. 3.
    Quoc, N.-H., Choi, W.-H.: A framework for recognition books on bookshelves. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 386–395. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04070-2_44CrossRefGoogle Scholar
  4. 4.
    Sobottka, K., Kronenberg, H., Perroud, T., Bunke, H.: Text extraction from colored book and journal covers. Int. J. Doc. Anal. Recogn. 2(4), 163–176 (2000)Google Scholar
  5. 5.
    Tkaczyk, D., Collins, A., Sheridan, P., Beel, J.: Machine learning vs. rules and out-of-the-box vs. retrained: an evaluation of open-source bibliographic reference and citation parsers. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, pp. 99–108. ACM (2018)Google Scholar
  6. 6.
    Waltinger, U., Mehler, A., Lösch, M., Horstmann, W.: Hierarchical classification of OAI metadata using the DDC taxonomy. In: Bernardi, R., Chambers, S., Gottfried, B., Segond, F., Zaihrayeu, I. (eds.) AT4DL/NLP4DL -2009. LNCS, vol. 6699, pp. 29–40. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23160-5_3CrossRefGoogle Scholar
  7. 7.
    Wu, J., et al.: PDFMEF: a multi-entity knowledge extraction framework for scholarly documents and semantic search. In: Proceedings of the 8th International Conference on Knowledge Capture, p. 13. ACM (2015)Google Scholar
  8. 8.
    Yang, X., et al.: Smart library: identifying books on library shelves using supervised deep learning for scene text reading. In: Proceedings of the 17th ACM/IEEE Joint Conference on Digital Libraries, pp. 245–248. IEEE Press (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sk. Simran Akhtar
    • 1
  • Debarshi Kumar Sanyal
    • 2
    Email author
  • Samiran Chattopadhyay
    • 1
  • Plaban Kumar Bhowmick
    • 2
  • Partha Pratim Das
    • 2
  1. 1.Jadavpur UniversityKolkataIndia
  2. 2.Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations