A Method for Retrieval of Tweets About Hospital Patient Experience

  • Julie Walters
  • Gobinda ChowdhuryEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11279)


Analysis of Twitter communications can capture data on hospital patient experience, and this will be more appropriate for hospital management and patient care because the data represent patients’ and carers’ experience about something as they happen. This paper reports on the development and testing of a semi-automatic method for retrieval of subsets of Twitter communications representing hospital patient experience on different topics and subtopics. Twelve main topics of discussions on patient experience have been identified. Furthermore, it has been demonstrated that it is possible to retrieve tweets on most of the topics by using pre-defined search strings comprising various terms that represent a given topic.


Twitter analysis Social media Patient experience Information retrieval 


  1. 1.
    NHS Confederation homepage. Accessed 15 Sept 2017
  2. 2.
    Yamamoto, S., Wakabayashi, K., Satoh, T., Nozaki, Y., Kando, N.: Twitter user growth analysis based on diversities in posting activities. Int. J. Web Inf. Syst. 13(4), 370–386 (2017)CrossRefGoogle Scholar
  3. 3. Care Quality Commission (2017). Accessed 15 Sept 2017
  4. 4.
    Ahmed, F., Burt, J., Roland, M.: Measuring patient experience: concepts and methods. Patient - Patient-Centered Outcomes Res. 7(3), 235–241 (2014)CrossRefGoogle Scholar
  5. 5.
    Al-Abri, R., Al-Balushi, A.: Patient satisfaction survey as a tool towards quality improvement. Oman Med. J. 29(1), 3–7 (2014)CrossRefGoogle Scholar
  6. 6. Patient opinion - NHS Choices (2017). Accessed 27 Sept 2017
  7. 7.
  8. 8.
    Abirami, A., Askarunisa, A.: Sentiment analysis model to emphasize the impact of online reviews in healthcare industry. Online Inf. Rev. 41(4), 471–486 (2017)CrossRefGoogle Scholar
  9. 9.
    NICE: National Institute for health and care excellence: Applying CG138 NICE patient experience in adult NHS services and QS15 NICE quality standard for patient experience in adult NHS services to complaints & the complaint process (2014). Accessed 12 June 2018
  10. 10.
    Schembri, S.: Experiencing health care service quality: through patient’ eyes. Aust. Health Rev. 39(1), 109–116 (2015)CrossRefGoogle Scholar
  11. 11.
    Doyle, C., Lennox, L., Bell, D.: A systematic review of evidence on the links between patient experience and clinical safety and effectiveness. BMJ Open 3(1). Accessed 12 June 2018CrossRefGoogle Scholar
  12. 12.
    Statista: Number of active users 2010–2017 (2017). Accessed 30 Sept 2017
  13. 13.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and why?: a survey study of status message Q&A behavior. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1739–1748. ACM (2010)Google Scholar
  14. 14.
    Jansen, B.J., Zhang, M.M., Sobel, K., Chowdury, A.: Twitter power: tweets as electronic word of mouth. J. Am. Soc. Inf. Sci. Technol. 60, 2169–2188 (2009)CrossRefGoogle Scholar
  15. 15.
    Ahmed, W., Bath, P., Sbaffi, L., Demartini, G.: Measuring the effect of public health campaigns on Twitter: the case of world autism awareness D. In: Chowdhury, G., McLeod, J., Gillet, V., Willett, P. (eds.) iConference2018. LNCS, vol. 10766. Springer, Heidelberg (2018)Google Scholar
  16. 16.
    Akay, A., Dragomir, A., Erlandsson, B.E.: Network-based modelling and intelligent data mining of social media for improving care. IEEE J. Biomed. Health Inform. 19, 210–218 (2015)CrossRefGoogle Scholar
  17. 17.
    Farrington, C., Burt, J., Boiko, O., Campbell, J., Roland, M.: Doctors’ engagements with patient experience surveys in primary and secondary care: a qualitative study. Health Expect. 20, 385–394 (2017). Scholar
  18. 18.
    Galloro, V.: Status update. Hospitals are finding ways to use the social media revolution to raise money, engage patients and connect with their communities. Modern Healthcare 41, 6–7 (2011)Google Scholar
  19. 19.
    Greaves, F., Ramirez-Cano, D., Millett, C., Darzi, A., Donaldson, L.: Harnessing the cloud of patient experience: using social media to detect poor quality healthcare. BMJ Qual. Saf. 22, 251–255 (2013)CrossRefGoogle Scholar
  20. 20.
    Greaves, F., et al.: Tweets about hospital quality: a mixed methods study. BMJ Qual. Saf. 23, 838–846 (2014)CrossRefGoogle Scholar
  21. 21.
    Hemsley, B., Palmer, S., Balandin, S.: Tweet reach: a research protocol for using Twitter to increase information exchange in people with communication disabilities. Dev. Neurorehabilitation 17, 84–89 (2014)CrossRefGoogle Scholar
  22. 22.
    Kuang, S., Davison, B.: Learning word embeddings with chi-square weights for healthcare tweet classification. Appl. Sci. 7(8), 846 (2017)CrossRefGoogle Scholar
  23. 23.
    Lee, J.L., Decamp, M., Dredze, M., Chisolm, M.S., Berger, Z.D.: What are health-related users tweeting? A qualitative content analysis of health-related users and their messages on Twitter. J. Med. Internet Res. 16, 122–130 (2014)CrossRefGoogle Scholar
  24. 24.
    Misopoulos, F., Mitic, M., Kapoulas, A., Karapiperis, C.: Uncovering customer service experiences with Twitter: the case of airline industry. Manag. Decis. 52, 705–723 (2014)CrossRefGoogle Scholar
  25. 25.
    Scanfeld, D., Scanfeld, V., Larson, E.: Dissemination of health information through social networks: Twitter and antibiotics. Am. J. Infection Control 38(3), 182–188 (2010)CrossRefGoogle Scholar
  26. 26.
    Atefeh, F., Khreich, W.: A survey of techniques for event detection in Twitter. Comput. Intell. 31(1), 132–164 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Giachanou, A., Harvey, M., Crestani, F.: Topic-specific stylistic variations for opinion retrieval on Twitter. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 466–478. Springer, Cham (2016). Scholar
  28. 28.
    Corley, C.D., Cook, D.J., Mikler, A.R., Singh, K.P.: Text and structural data mining of influenza mentions in web and social media. Int. J. Environ. Res. Public Health 7, 596–615 (2010)CrossRefGoogle Scholar
  29. 29.
    Huang, F.L., Zhang, S.C., Zhang, J.L., Yu, G.: Multimodal learning for topic sentiment analysis in microblogging. Neurocomputing 253, 144–153 (2017)CrossRefGoogle Scholar
  30. 30.
    Jain, V.K., Kumar, S., Fernandes, S.L.: Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. J. Comput. Sci. 21, 316–326 (2017)CrossRefGoogle Scholar
  31. 31.
    Inkpen, D., Liu, J., Farzindar, A., Kazemi, F., Ghazi, D.: Location detection and disambiguation from Twitter messages. J. Intell. Inf. Syst. 49(2), 237–253 (2017)CrossRefGoogle Scholar
  32. 32.
    Jain, A., Jain, M.: Location based Twitter opinion mining using common-sense information. Global J. Enterprise Inf. Syst. 9(2), 28 (2017)CrossRefGoogle Scholar
  33. 33.
    Dodd, L., Chowdhury, G., Harvey, M., Walton, G.: Information seeking behaviour of aspiring undergraduates on social media: who are they interacting with? In: Choemprayong, S., Crestani, F., Cunningham, S.J. (eds.) ICADL 2017. LNCS, vol. 10647, pp. 245–255. Springer, Cham (2017). Scholar
  34. 34.
    Eichstaedt, J.C., et al.: Psychological language on Twitter predicts county-level hearth disease mortality. Psychol. Sci. 26(2), 159–169 (2015)CrossRefGoogle Scholar
  35. 35.
    Batrinca, B., Treleaven, P.: Social media analytics: a survey of techniques, tools and platforms. AI Soc. 30(1), 89–116 (2014)CrossRefGoogle Scholar
  36. 36.
    Honeycutt, C., Herring, S.: Beyond microblogging: conversation and collaboration via Twitter. In: Proceedings of the 42nd Hawai International Conference on System Sciences (HICSS-42), Los Alamitos, CA. IEEE Press (2009). Accessed 12 June 2018
  37. 37.
    Clarke, V., Braun, V.: Thematic analysis. J. Positive Psychol. 12(3), 297–298 (2016)CrossRefGoogle Scholar
  38. 38.
    Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory. Aldine (1967)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesNorthumbria UniversityNewcastleUK

Personalised recommendations