Skip to main content

Correlation Filter Tracking with Complementary Features

  • Conference paper
  • First Online:
  • 1725 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11306))

Abstract

Although Correlation Filters (CF) tracking algorithms have inherent capability to tackle various challenging scenarios individually, none of them are robust enough to handle all the challenges simultaneously. For any online tracking based on Correlation Filters, feature is one of the most important factors due to its representation power of target appearance. In this paper, we proposed a new tracking framework by integrating the advantage of complementary features to achieve robust tracking performance. The key issue of this work lies in the fact that different features respond to different tracking challenges, which also applies to deep learning features and hand-craft features. Moreover, for the tracking speed balance, we train a light-weight deep CNN features by using end-to-end learning method, which has the same Parameter magnitude as the hand-crafted features. Experimental results on OTB-2013, OTB-2015 large benchmarks datasets show that the proposed tracker performs favorably against several state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Junseok, K., Leek, M.L.: Visual tracking decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1269–1276. IEEE Press, San Francisco (2010)

    Google Scholar 

  2. Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels. In: International Conference on Computer Vision, pp. 263–270. IEEE Computer Society (2011)

    Google Scholar 

  3. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007)

    Article  Google Scholar 

  4. Bolme, D.S., Beveridge, J.R.: Visual object tracking using adaptive correlation filters. Comput. Vis. Pattern Recognit. 119(5), 2544–2550 (2010)

    Google Scholar 

  5. Galoogahi, H. K., Sim, T., Lucey, S.: Multi-channel correlation filters. In: IEEE International Conference on Computer Vision, pp. 3072–3079, IEEE (2014)

    Google Scholar 

  6. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  7. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 809–817. Curran Associates Inc., Lake Tahoe (2013)

    Google Scholar 

  8. Zhang, K., Liu, Q., Wu, Y., Yang, M.H.: Robust visual tracking via convolutional networks without training. IEEE Trans. Image Process. 25(4), 1779–1792 (2016)

    MathSciNet  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural network. Adv. Neural. Inf. Process. Syst. 60(1), 1097–1105 (2012)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE Computer Society (2014)

    Google Scholar 

  11. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302. IEEE (2016)

    Google Scholar 

  12. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: IEEE International Conference on Computer Vision, pp. 3119–3127. IEEE (2015)

    Google Scholar 

  13. Wang, L., Ouyang, W., Wang, X., Lu, H.: STCT: sequentially training convolutional networks for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1373–1381. IEEE (2016)

    Google Scholar 

  14. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5000–5008. IEEE (2017)

    Google Scholar 

  15. Wang, Q., Gao, J., Xing, J., Zhang, M., Hu, W.: Dcfnet: discriminant correlation filters network for visual tracking. arXiv:2017.1704.04057, http://cn.arxiv.org/abs/1704.04057

  16. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Staple: complementary learners for real-time tracking. Comput. Vis. Pattern Recognit. 38(2), 1401–1409 (2016)

    Google Scholar 

  17. Zhang, L., Suganthan, P.N.: Robust visual tracking via co-trained kernelized correlation filters. Pattern Recognit. 69(1), 82–93 (2017)

    Article  Google Scholar 

  18. Ma, C., Xu, Y., Ni, B., Yang, X.: When correlation filters meet convolutional neural networks for visual tracking. IEEE Signal Process. Lett. 23(10), 1454–1458 (2016)

    Article  Google Scholar 

  19. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 119, pp. 2544–2550. IEEE (2010)

    Google Scholar 

  20. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Article  Google Scholar 

  21. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, vol. 65, pp. 1–11 (2014)

    Google Scholar 

  22. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1387–1395. IEEE (2016)

    Google Scholar 

  23. Danelljan, M., Häger, G., Khan, F. S., Felsberg, M.: Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430–1438. IEEE (2016)

    Google Scholar 

  24. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5388–5396. IEEE (2015)

    Google Scholar 

  25. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Staple: complementary learners for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 38, no. 2, pp. 1401–1409. IEEE (2015)

    Google Scholar 

  26. Zhang, L., Suganthan, P.N.: Robust visual tracking via co-trained kernelized correlation filters. Pattern Recognit. 69, 82–93 (2017)

    Article  Google Scholar 

  27. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: IEEE International Conference on Computer Vision, pp. 3074–3082. IEEE Computer Society (2015)

    Google Scholar 

  28. Zhang, L., Varadarajan, J., Suganthan, P.N., Ahuja, N., Moulin, P.: Robust visual tracking using oblique random forests. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5825–5834. IEEE (2017)

    Google Scholar 

  29. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: efficient convolution operators for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6931–6939. IEEE (2017)

    Google Scholar 

  30. Bertinetto, L., Valmadre, J., Henriques, João F., Vedaldi, A., Torr, Philip H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv 2014.1409.1556. http://cn.arxiv.org/abs/1409.1556

  32. Russakovsky, O., Deng, J., Su, H.: imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  33. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  34. Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 188–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingquan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Li, W., Shi, M. (2018). Correlation Filter Tracking with Complementary Features. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04224-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04223-3

  • Online ISBN: 978-3-030-04224-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics