Skip to main content

Machine Learning Techniques for Classification of Livestock Behavior

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11304))

Abstract

Animal activity recognition is in the interest of agricultural community, animal behaviorists, and conservationists since it acts as an indicator of the animal’s health in addition to their nutrition intake when the observation is performed during the circadian circle. Machine learning techniques and tools are used to help identify the activities of livestock. These techniques are helpful to discriminate between complex patterns for classifying animal behaviors during the day; human observation alone is labor intensive and time consuming. This research proposes a robust machine learning method to classify five activities of livestock. To prove the concept, a dataset was utilized based on the observation of two sheep and four goats. A feature selection technique, namely Boruta, was tested with multilayer perceptron, random forests, extreme gradient boosting, and k-Nearest neighbors algorithms. The best results were obtained with random forests achieving accuracy of 96.47% and kappa value of 95.41%. The results showed that the method can classify grazing, lying, scratching or biting, standing, and walking with high sensitivity and specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McLennan, K.M., et al.: Technical note: validation of an automatic recording system to assess behavioural activity level in sheep (Ovis aries). Small Rumin. Res. 127, 92–96 (2015)

    Article  Google Scholar 

  2. Barwick, J., Lamb, D., Dobos, R., Schneider, D., Welch, M., Trotter, M.: Predicting lameness in sheep activity using tri-axial acceleration signals. Animals 8 (2018)

    Article  Google Scholar 

  3. Shepard, E.L.C., et al.: Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008)

    Article  Google Scholar 

  4. Gougoulis, D.A., Kyriazakis, I., Fthenakis, G.C.: Diagnostic significance of behaviour changes of sheep: a selected review. Small Rumin. Res. 92, 52–56 (2010)

    Article  Google Scholar 

  5. Krahnstoever, N., Rittscher, J., Tu, P., Chean, K., Tomlinson, T.: Activity recognition using visual tracking and RFID. In: Seventh IEEE Workshops on Application of Computer Vision, WACV/MOTIONS 2005, vol. 1, pp. 494–500 (2005)

    Google Scholar 

  6. Cangar, Ö., et al.: Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Comput. Electron. Agric. 64, 53–60 (2008)

    Article  Google Scholar 

  7. Schlecht, E., Hülsebusch, C., Mahler, F., Becker, K.: The use of differentially corrected global positioning system to monitor activities of cattle at pasture. Appl. Anim. Behav. Sci. 85, 185–202 (2004)

    Article  Google Scholar 

  8. Ungar, E.D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A., Ganskopp, D.: Inference of animal activity from gps collar data on free-ranging cattle. Rangel. Ecol. Manag. 58, 256–266 (2005)

    Article  Google Scholar 

  9. Schwager, M., Anderson, D.M., Butler, Z., Rus, D.: Robust classification of animal tracking data. Comput. Electron. Agric. 56, 46–59 (2007)

    Article  Google Scholar 

  10. Giovanetti, V., et al.: Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livest. Sci. 196, 42–48 (2017)

    Article  Google Scholar 

  11. González, L.A., Bishop-Hurley, G.J., Handcock, R.N., Crossman, C.: Behavioral classification of data from collars containing motion sensors in grazing cattle. Comput. Electron. Agric. 110, 91–102 (2015)

    Article  Google Scholar 

  12. Gutierrez-Galan, D., et al.: Embedded neural network for real-time animal behavior classification. Neurocomputing 272, 17–26 (2018)

    Article  Google Scholar 

  13. Nadimi, E.S., Jørgensen, R.N., Blanes-Vidal, V., Christensen, S.: Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks. Comput. Electron. Agric. 82, 44–54 (2012)

    Article  Google Scholar 

  14. Kamminga, J.W., Bisby, H.C., Le, D.V., Meratnia, N., Havinga, P.J.M.: Generic online animal activity recognition on collar tags. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers on - UbiComp 2017, pp. 597–606. ACM, New York (2017)

    Google Scholar 

  15. Umstätter, C., Waterhouse, A., Holland, J.P.: An automated sensor-based method of simple behavioural classification of sheep in extensive systems. Comput. Electron. Agric. 64, 19–26 (2008)

    Article  Google Scholar 

  16. Arcidiacono, C., Porto, S.M.C.C., Mancino, M., Cascone, G.: Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Comput. Electron. Agric. 134, 124–134 (2017)

    Article  Google Scholar 

  17. le Roux, S.P., Marias, J., Wolhuter, R., Niesler, T.: Animal-borne behaviour classification for sheep (Dohne Merino) and Rhinoceros (Ceratotherium simum and Diceros bicornis). Anim. Biotelemetry. 5, 25 (2017)

    Article  Google Scholar 

  18. Radeski, M., Ilieski, V.: Gait and posture discrimination in sheep using a tri-axial accelerometer. Animal. 11, 1249–1257 (2017)

    Article  Google Scholar 

  19. Le Roux, S., Wolhuter, R., Niesler, T.: An overview of automatic behaviour classification for animal-borne sensor applications in South Africa (2017)

    Google Scholar 

  20. Anderson, D.M., Estell, R.E., Holechek, J.L., Ivey, S., Smith, G.B.: Virtual herding for flexible livestock management - a review. Rangel. J. 36, 205–221 (2014)

    Article  Google Scholar 

  21. Norton, B.E., Barnes, M., Teague, R.: Grazing management can improve livestock distribution: increasing accessible forage and effective grazing capacity. Rangelands 35, 45–51 (2013)

    Article  Google Scholar 

  22. Rutter, S.M.: 13 - Advanced livestock management solutions. In: Ferguson, D.M., Lee, C., Fisher, A. (eds.) Advances in Sheep Welfare, pp. 245–261. Woodhead Publishing (2017)

    Google Scholar 

  23. Kamminga, J.W.: Generic online animal activity recognition on collar tags (2017)

    Google Scholar 

  24. Mitra, S.K.: Digital Signal Processing: A Computer-Based Approach. McGraw-Hill School Education Group (2001)

    Google Scholar 

  25. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing (1975)

    Google Scholar 

  26. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  27. Kursa, M.B., Rudnicki, W.: Feature Selection with Boruta Package (2010)

    Google Scholar 

  28. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  29. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  30. Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System. arXiv1603.02754 [cs], pp. 785–794 (2016)

    Google Scholar 

  31. Kramer, O.: K-nearest neighbors. In: Dimensionality Reduction with Unsupervised Nearest Neighbors, pp. 13–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38652-7_2

    Chapter  Google Scholar 

  32. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Scheibe, K.M., et al.: ETHOSYS (R)—new system for recording and analysis of behaviour of free-ranging domestic animals and wildlife. Appl. Anim. Behav. Sci. 55, 195–211 (1998)

    Article  Google Scholar 

  34. Alvarenga, F.A.P., Borges, I., Palkovič, L., Rodina, J., Oddy, V.H., Dobos, R.C.: Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 181, 91–99 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thank the Douglas Bomford Trust for the financial and moral support during the project. Additionally, we thank the authors who made their dataset publicly available for use by the community [23].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natasa Kleanthous or Abir Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kleanthous, N. et al. (2018). Machine Learning Techniques for Classification of Livestock Behavior. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11304. Springer, Cham. https://doi.org/10.1007/978-3-030-04212-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04212-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04211-0

  • Online ISBN: 978-3-030-04212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics