Skip to main content

Discrete Sparse Hashing for Cross-Modal Similarity Search

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11304))

Included in the following conference series:

Abstract

Cross-modal hashing approaches have achieved great success on cross-modal similarity search. However, most existing cross-modal hashing methods relax the discrete constraints to solve the hashing model and determine the weights of different modalities manually, which can significantly degrade the performance of retrieval. Besides, they are sensitive to noises because of the widely-utilized \(l_2\)-norm loss function. To address above problems, in this paper, a novel hashing method is proposed to efficiently learn unified binary codes, namely Discrete Sparse Hashing (DSH). In DSH model, unified hash codes are directly learned by discrete sparse coding in sharing low-dimensional latent space for different modalities, where the large quantization error is avoided and the learned codes are robust owing to the sparsity of binary codes. Moreover, the weights of different modalities are adaptively adjusted for training data. Extensive experiments on three databases demonstrate superior performance of DSH over most state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from national university of Singapore. In: ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

    Google Scholar 

  2. Ding, G., Guo, Y., Zhou, J.: Collective matrix factorization hashing for multimodal data. In: Computer Vision and Pattern Recognition, pp. 2083–2090 (2014)

    Google Scholar 

  3. He, R., Zhang, M., Wang, L., Ji, Y., Yin, Q.: Cross-modal subspace learning via pairwise constraints. IEEE Trans. Image Process. 24(12), 5543–5556 (2015)

    Article  MathSciNet  Google Scholar 

  4. Jiang, Q.Y., Li, W.J.: Deep cross-modal hashing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3270–3278 (2017)

    Google Scholar 

  5. Jin, Q., Grama, I., Kervrann, C., Liu, Q.: Nonlocal means and optimal weights for noise removal. SIAM J. Imaging Sci. 10(4), 1878–1920 (2017)

    Article  MathSciNet  Google Scholar 

  6. Kumar, S., Udupa, R.: Learning hash functions for cross-view similarity search. In: International Joint Conference on Artificial Intelligence, pp. 1360–1365 (2011)

    Google Scholar 

  7. Li, K., Qi, G., Ye, J., Hua, K.: Linear subspace ranking hashing for cross-modal retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1825–1838 (2017)

    Article  Google Scholar 

  8. Li, X., Hu, D., Nie, F.: Deep binary reconstruction for cross-modal hashing. In: Proceedings of the 2017 ACM on Multimedia Conference, pp. 1398–1406 (2017)

    Google Scholar 

  9. Lin, Z., Ding, G., Hu, M., Wang, J.: Semantics-preserving hashing for cross-view retrieval. In: Computer Vision and Pattern Recognition, pp. 3864–3872 (2015)

    Google Scholar 

  10. Long, M., Cao, Y., Wang, J., Yu, P.S.: Composite correlation quantization for efficient multimodal retrieval. Computer Science, pp. 579–588 (2016)

    Google Scholar 

  11. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1. Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  12. Rasiwasia, N., et al.: A new approach to cross-modal multimedia retrieval. In: International Conference on Multimedia, pp. 251–260 (2010)

    Google Scholar 

  13. Rastegari, M., Choi, J., Fakhraei, S., Daume Iii, H., Davis, L.S.: Predictable dual-view hashing. In: International Conference on International Conference on Machine Learning, pp. 1328–1336 (2013)

    Google Scholar 

  14. Schnemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)

    Article  MathSciNet  Google Scholar 

  15. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: Computer Vision and Pattern Recognition, pp. 37–45 (2015)

    Google Scholar 

  16. Song, J., Yang, Y., Yang, Y., Huang, Z., Shen, H.T.: Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: ACM SIGMOD International Conference on Management of Data, pp. 785–796 (2013)

    Google Scholar 

  17. Wang, D., Wang, Q., Gao, X.: Robust and flexible discrete hashing for cross-modal similarity search. IEEE Trans. Circuits Syst. Video Technol. 99, 1–1 (2017)

    Google Scholar 

  18. Wang, W., Ooi, B.C., Yang, X., Zhang, D., Zhuang, Y.: Effective multi-modal retrieval based on stacked auto-encoders. Proc. VLDB Endow. 7(8), 649–660 (2014)

    Article  Google Scholar 

  19. Wu, F., Jing, X.Y., You, X., Yue, D., Hu, R., Yang, J.Y.: Multi-view low-rank dictionary learning for image classification. Pattern Recognit. 50(C), 143–154 (2016)

    Article  Google Scholar 

  20. Wu, F., Jing, X.Y., Yue, D.: Multi-view Discriminant Dictionary Learning via Learning View-specific and Shared Structured Dictionaries for Image Classification. Kluwer Academic Publishers (2017)

    Google Scholar 

  21. Xu, X., Shen, F., Yang, Y., Shen, H.T., Li, X.: Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans. Image Process. 26(5), 2494–2507 (2017)

    Article  MathSciNet  Google Scholar 

  22. Zhang, D., Li, W.J.: Large-scale supervised multimodal hashing with semantic correlation maximization. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2177–2183 (2014)

    Google Scholar 

  23. Zhen, Y., Yeung, D.Y.: A probabilistic model for multimodal hash function learning. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 940–948 (2012)

    Google Scholar 

  24. Zhou, J., Ding, G., Guo, Y.: Latent semantic sparse hashing for cross-modal similarity search. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 415–424 (2014)

    Google Scholar 

  25. Zhu, X., Huang, Z., Shen, H.T., Zhao, X.: Linear cross-modal hashing for efficient multimedia search. In: ACM Multimedia Conference, pp. 143–152 (2013)

    Google Scholar 

Download references

Acknowledgement

This research is partly supported by NSFC, China (No: 61572315, 6151101179) and 973 Plan, China (No. 2015CB856004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Ma, C., Tu, E., Yang, J., Kasabov, N. (2018). Discrete Sparse Hashing for Cross-Modal Similarity Search. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11304. Springer, Cham. https://doi.org/10.1007/978-3-030-04212-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04212-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04211-0

  • Online ISBN: 978-3-030-04212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics