Skip to main content

Privacy-Preserving K-Means Clustering Upon Negative Databases

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11304))

Included in the following conference series:

Abstract

Data mining has become very popular with the arrival of big data era, but it also raises privacy issues. Negative database (NDB) is a new type of data representation which stores the negative image of data and can protect privacy while supporting some basic data mining operations such as classification and clustering. However, the existing clustering algorithm upon NDBs is based on Hamming distance, when facing datasets which have many categories for each attribute, the encoded data will become very long and resulting in low computational efficiency. In this paper, we propose a privacy-preserving k-means clustering algorithm based on Euclidean distance upon NDBs. The main step of k-means algorithm is to calculate the distance between each record and cluster centers, in order to solve the problem of privacy disclosure in this step, we transform each record in database into an NDB and propose a method to estimate Euclidean distance from a binary string and an NDB. Our work opens up new ideas for data mining upon negative database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, Y., Luo, W., Zhang, X.: Estimating positive surveys from negative surveys. Stat. Prob. Lett. 83(2), 551–558 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bringer, J., Chabanne, H.: Negative databases for biometric data. In: Proceedings of the 12th ACM Workshop on Multimedia and Security, pp. 55–62. ACM (2010)

    Google Scholar 

  3. Chen, K., Liu, L.: Geometric data perturbation for privacy preserving outsourced data mining. Knowl. Inf. Syst. 29(3), 657–695 (2011)

    Article  Google Scholar 

  4. Dasgupta, D., Azeem, R.: An investigation of negative authentication systems. In: Proceedings of 3rd International Conference on Information Warfare and Security, pp. 117–126 (2008)

    Google Scholar 

  5. Dasgupta, D., Roy, A., Nag, A.: Negative authentication systems. Advances in User Authentication. ISFS, pp. 85–145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58808-7_3

    Chapter  Google Scholar 

  6. Dasgupta, D., Saha, S.: A biologically inspired password authentication system. In: Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence Challenges and Strategies, p. 41. ACM (2009)

    Google Scholar 

  7. Dasgupta, D., Saha, S.: Password security through negative filtering. In: 2010 International Conference on Emerging Security Technologies (EST), pp. 83–89. IEEE (2010)

    Google Scholar 

  8. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml. Accessed 27 Aug 2018

  9. Dhiraj, S.S., Khan, A.M.A., Khan, W., Challagalla, A.: Privacy preservation in k-means clustering by cluster rotation. In: TENCON 2009–2009 IEEE Region 10 Conference, pp. 1–7. IEEE (2009)

    Google Scholar 

  10. Esponda, F.: Everything that is not important: negative databases [research frontier]. IEEE Comput. Intell. Mag. 3(2), 60–63 (2008)

    Article  Google Scholar 

  11. Esponda, F.: Negative surveys. arXiv preprint. arXiv: math/0608176 (2006)

  12. Esponda, F.: Hiding a needle in a haystack using negative databases. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 15–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88961-8_2

    Chapter  Google Scholar 

  13. Esponda, F., Ackley, E.S., Helman, P., Jia, H., Forrest, S.: Protecting data privacy through hard-to-reverse negative databases. Int. J. Inf. Secur. 6(6), 403–415 (2007)

    Article  Google Scholar 

  14. Esponda, F., Forrest, S., Helman, P.: Enhancing privacy through negative representations of data. Technical report, Department of Computer Science, University of New Mexico (2004)

    Google Scholar 

  15. Esponda, F., Trias, E.D., Ackley, E.S., Forrest, S.: A relational algebra for negative databases. University of New Mexico, Technical report (2007)

    Google Scholar 

  16. Ferris, B., Froehlich, J.: WalkSAT as an informed heuristic to DPLL in sat solving. Technical report, CSE 573: Artificial Intelligence (2004)

    Google Scholar 

  17. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  18. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 593–599. ACM (2005)

    Google Scholar 

  19. Jia, H., Moore, C., Strain, D.: Generating hard satisfiable formulas by hiding solutions deceptiveily. In: National Conference on Artificial Intelligence, pp. 384–389 (2005)

    Google Scholar 

  20. Lin, K.P.: Privacy-preserving kernel k-means clustering outsourcing with random transformation. Knowl. Inf. Syst. 49(3), 885–908 (2016)

    Article  Google Scholar 

  21. Liu, R., Luo, W., Wang, X.: A hybrid of the prefix algorithm and the q-hidden algorithm for generating single negative databases. In: 2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), pp. 31–38. IEEE (2011)

    Google Scholar 

  22. Liu, R., Luo, W., Yue, L.: Classifying and clustering in negative databases. Front. Comput. Sci. 7(6), 864–874 (2013)

    Article  MathSciNet  Google Scholar 

  23. Liu, R., Luo, W., Yue, L.: The p-hidden algorithm: hiding single databases more deeply. Immune Comput. 2(1), 43–55 (2014)

    Google Scholar 

  24. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: an efficient SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_27

    Chapter  Google Scholar 

  25. Oliveira, S., Zaiane, O.: Data perturbation by rotation for privacy-preserving clustering. Technical report TR04-17 (2004)

    Google Scholar 

  26. Patel, S., Patel, V., Jinwala, D.: Privacy preserving distributed k-means clustering in malicious model using zero knowledge proof. In: Hota, C., Srimani, P.K. (eds.) ICDCIT 2013. LNCS, vol. 7753, pp. 420–431. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36071-8_33

    Chapter  Google Scholar 

  27. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_51

    Chapter  Google Scholar 

  28. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: AAAI, vol. 94, pp. 337–343 (1994)

    Google Scholar 

  29. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 206–215. ACM (2003)

    Google Scholar 

  30. Zhao, D., Luo, W., Liu, R., Yue, L.: A fine-grained algorithm for generating hard-toreverse negative databases. In: 2015 International Workshop on Artificial Immune Systems (AIS), pp. 1–8 (2015)

    Google Scholar 

  31. Zhao, D., Luo, W., Liu, R., Yue, L.: Negative iris recognition. IEEE Trans. Dependable Secure Comput. 15(1), 112–125 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61806151, 61672398, 61702387), the Hubei Provincial Natural Science Foundation of China (Grant No. 2017CFA012, 2017CFB302), the Key Technical Innovation Project of Hubei (Grant No. 2017AAA122), Provincial Science & Technology International Cooperation Program of Hubei (Grant No. 2017AHB048), the Applied Fundamental Research of Wuhan (Grant No. 20160101010004), and the Open Fund of Hubei Key Lab. of Transportation of IoT (Grant No. 2017III28-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Zhao or Jianwen Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X. et al. (2018). Privacy-Preserving K-Means Clustering Upon Negative Databases. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11304. Springer, Cham. https://doi.org/10.1007/978-3-030-04212-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04212-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04211-0

  • Online ISBN: 978-3-030-04212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics