Skip to main content

A Brain-Inspired Cognitive System that Mimics the Dynamics of Human Thought

  • Conference paper
  • First Online:
Artificial Intelligence XXXV (SGAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11311))

Abstract

In recent years, some impressive AI systems have been built that can play games and answer questions about large quantities of data. However, we are still a very long way from AI systems that can think and learn in a human-like way. We have a great deal of information about how the brain works and can simulate networks of hundreds of millions of neurons. So it seems likely that we could use our neuroscientific knowledge to build brain-inspired artificial intelligence that acts like humans on similar timescales. This paper describes an AI system that we have built using a brain-inspired network of artificial spiking neurons. On a word recognition and colour naming task our system behaves like human subjects on a similar timescale. In the longer term, this type of AI technology could lead to more flexible general purpose artificial intelligence and to more natural human-computer interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code can be found on http://www.cwa.mdx.ac.uk/NEAL/NEAL.html.

References

  1. Arena, P., Patané, L., Termini, P.S.: An insect brain computational model inspired by drosophila melanogaster: simulation results. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  2. Benbassat, A., Henik, A.: Examining the stroop effect using a develomental spatial neuroevolution system. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 747–748. ACM (2015)

    Google Scholar 

  3. Buzsáki, G.: Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3), 362–385 (2010)

    Article  Google Scholar 

  4. Cohen, J.D., Dunbar, K., McClelland, J.L.: On the control of automatic processes: a parallel distributed processing account of the stroop effect. Psychol. Rev. 97(3), 332 (1990)

    Article  Google Scholar 

  5. Collins, A., Quillian, M.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8(2), 240–247 (1969)

    Article  Google Scholar 

  6. Dunbar, K., MacLeod, C.M.: A horse race of a different color: stroop interference patterns with transformed words. J. Exp. Psychol. Hum. Percept. Perform. 10(5), 622 (1984)

    Article  Google Scholar 

  7. Fennell, A.: Does response modality influence conflict? Modelling vocal and manual response stroop interference. Ph.d. thesis, The Ohio State University (2017)

    Google Scholar 

  8. Ferrucci, D., et al.: Building watson: an overview of the deepQA project. AI Mag. 31(3), 59–79 (2010)

    Article  Google Scholar 

  9. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014). https://doi.org/10.1109/JPROC.2014.2304638

    Article  Google Scholar 

  10. Garagnani, M., Wennekers, T., Pulvermüller, F.: Recruitment and consolidation of cell assemblies for words by way of hebbian learning and competition in a multi-layer neural network. Cogn. Comput. 1(2), 160–176 (2009)

    Article  Google Scholar 

  11. Gerstein, G.L., Kirkland, K.L.: Neural assemblies: technical issues, analysis, and modeling. Neural Netw. 14(6–7), 589–598 (2001)

    Article  Google Scholar 

  12. Gewaltig, M., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  13. Glaser, M.O., Glaser, W.R.: Time course analysis of the stroop phenomenon. J. Exp. Psychol. Hum. Percept. Perform. 8(6), 875 (1982)

    Article  Google Scholar 

  14. Glaser, W.R., Düngelhoff, F.J.: The time course of picture-word interference. J. Exp. Psychol. Hum. Percept. Perform. 10(5), 640 (1984)

    Article  Google Scholar 

  15. Gold, J.I., Shadlen, M.N.: The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007)

    Article  Google Scholar 

  16. Hebb, D.O., et al.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  17. van den Heuvel, M.P., Sporns, O.: Network hubs in the human brain. Trends Cogn. Sci. 17(12), 683–696 (2013)

    Article  Google Scholar 

  18. Huyck, C.: Creating hierarchical categories using cell assemblies. Connect. Sci. 19(1), 1–24 (2007)

    Article  Google Scholar 

  19. Huyck, C.: A psycholinguistic model of natural language parsing implemented in simulated neurons. Cogn. Neurodynamics 3(4), 316–330 (2009)

    Article  Google Scholar 

  20. Huyck, C., Mitchell, I.: Post and pre-compensatory Hebbian learning for categorisation. Comput. Neurodynamics 8(4), 299–311 (2014)

    Article  Google Scholar 

  21. Huyck, C.R., Passmore, P.J.: A review of cell assemblies. Biol. Cybern. 107(3), 263–288 (2013)

    Article  Google Scholar 

  22. IBM: Project debater. https://www.research.ibm.com/artificial-intelligence/project-debater/

  23. Kaplan, G.B., Şengör, N., Gürvit, H., Güzeliş, C.: Modelling the stroop effect: a connectionist approach. Neurocomputing 70(7–9), 1414–1423 (2007)

    Article  Google Scholar 

  24. Kello, C.T., Plaut, D.C., MacWhinney, B.: The task dependence of staged versus cascaded processing: an empirical and computational study of stroop interference in speech perception. J. Exp. Psychol. Gen. 129(3), 340 (2000)

    Article  Google Scholar 

  25. Laeng, B., LÃ¥g, T., Brennen, T.: Reduced stroop interference for opponent colors may be due to input factors: evidence from individual differences and a neural network simulation. J. Exp. Psychol. Hum. Percept. Perform. 31(3), 438 (2005)

    Article  Google Scholar 

  26. MacLeod, C.M.: The stroop effect. In: Luo, R. (ed.) Encyclopedia of Color Science and Technology, pp. 1–6. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-27851-8_67-1

    Chapter  Google Scholar 

  27. MacLeod, C.M., Dunbar, K.: Training and stroop-like interference: evidence for a continuum of automaticity. J. Exp. Psychol. Learn., Mem., Cogn. 14(1), 126 (1988)

    Article  Google Scholar 

  28. Marcus, G.: Deep learning: a critical appraisal. CoRR abs/1801.00631 (2018). http://arxiv.org/abs/1801.00631

  29. Markram, H.: The human brain project. Sci. Am. 306(6), 50–55 (2012)

    Article  Google Scholar 

  30. Melara, R.D., Algom, D.: Driven by information: a tectonic theory of stroop effects. Psychol. Rev. 110(3), 422 (2003)

    Article  Google Scholar 

  31. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–33 (2015)

    Article  Google Scholar 

  32. Nabavi, S., Fox, R., Proulx, C.D., Lin, J.Y., Tsien, R.Y., Malinow, R.: Engineering a memory with LTD and LTP. Nature 511(7509), 348 (2014)

    Article  Google Scholar 

  33. Palm, G.: Neural Assemblies. An Alternative Approach to Artificial Intelligence. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-81792-2

    Book  Google Scholar 

  34. Phaf, R.H., Van der Heijden, A., Hudson, P.T.: Slam: a connectionist model for attention in visual selection tasks. Cogn. Psychol. 22(3), 273–341 (1990)

    Article  Google Scholar 

  35. Roelofs, A.: Goal-referenced selection of verbal action: modeling attentional control in the stroop task. Psychol. Rev. 110(1), 88 (2003)

    Article  Google Scholar 

  36. Rumelhart, D.E., McClelland, J.L.: An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model. Psychol. Rev. 89(1), 60 (1982)

    Article  Google Scholar 

  37. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–59 (2017)

    Article  Google Scholar 

  38. Stroop, J.R.: Studies of interference in serial verbal reactions. J. Exp. Psychol. 18(6), 643 (1935)

    Article  Google Scholar 

  39. Stroop, J.R.: Factors affecting speed in serial verbal reactions. Psychol. Monogr. 50(5), 38 (1938)

    Article  Google Scholar 

  40. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: face recognition with very deep neural networks. CoRR abs/1502.00873 (2015). http://arxiv.org/abs/1502.00873

  41. Szigeti, B., et al.: Openworm: an open-science approach to modeling caenorhabditis elegans. Front. Comput. Neurosci. 8, 137 (2014)

    Article  Google Scholar 

  42. Tetzlaff, C., Dasgupta, S., Kulvicius, T., Wörgötter, F.: The use of hebbian cell assemblies for nonlinear computation. Sci. Rep. 5, 12866 (2015)

    Article  Google Scholar 

  43. Van Maanen, L., Van Rijn, H.: An accumulator model account of semantic interference in memory retrieval. In: Proceedings of the Seventh International Conference on Cognitive Modeling, pp. 322–327 (2006)

    Google Scholar 

  44. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  45. Yamamoto, N., Incera, S., McLennan, C.T.: A reverse stroop task with mouse tracking. Front. Psychol. 7, 670 (2016)

    Article  Google Scholar 

  46. Yusoff, N., Grüning, A., Browne, A.: Modelling the stroop effect: dynamics in inhibition of automatic stimuli processing. In: Wang, R., Gu, F. (eds.) Advances in Cognitive Neurodynamics (II), pp. 641–645. Springer, Dordrecht (2011). https://doi.org/10.1007/978-90-481-9695-1_95

    Chapter  Google Scholar 

  47. Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6, 6922 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 720270 (the Human Brain Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehu Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, Y., Gamez, D., Huyck, C. (2018). A Brain-Inspired Cognitive System that Mimics the Dynamics of Human Thought. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXV. SGAI 2018. Lecture Notes in Computer Science(), vol 11311. Springer, Cham. https://doi.org/10.1007/978-3-030-04191-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04191-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04190-8

  • Online ISBN: 978-3-030-04191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics