Skip to main content

InsightGAN: Semi-Supervised Feature Learning with Generative Adversarial Network for Drug Abuse Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11303))

Abstract

We present a novel generative adversarial network (GAN) model, called InsightGAN, for drug abuse detection. Our model is inspired by two closely related works on machine learning for healthcare applications: (1) drug abuse detection has been solved by machine learning with plentiful data from social media (where face pictures can be easily obtained); (2) facial characteristics have been explored in mental disorder diagnosis (drug addiction is also a mental disorder). In this paper, we adopt deep learning to extract discriminative facial features for drug abuse detection. However, in this application, the face pictures with ground-truth labels are far from sufficient for training a deep learning model. To alleviate the scarcity of labelled data, we thus propose a semi-supervised facial feature learning model based on GAN. Moreover, we also develop a robust algorithm for training our InsightGAN. Experimental results show the promising performance of our InsightGAN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/JoinGitHubing/drugIdentification.

References

  1. Aldridge, K., George, I.D., Cole, K.K., et al.: Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Mol. Autism 2(1), 15 (2011)

    Article  Google Scholar 

  2. Alnajjar, A., Idris, A.M., Multzenberg, M., Mccord, B.: Development of a capillary electrophoresis method for the screening of human urine for multiple drugs of abuse. J. Chromatogr. B 856(1–2), 62–67 (2007)

    Article  Google Scholar 

  3. Austin, J.R., Takahashi, T.N., Duan, Y.: Distinct facial phenotypes in children with autism spectrum disorders and their unaffected siblings. In: International Meeting for Autism Research (2012)

    Google Scholar 

  4. Baciu, T., Borrull, F., Aguilar, C., Calull, M.: Recent trends in analytical methods and separation techniques for drugs of abuse in hair. Analytica Chimica Acta 856, 1–26 (2015)

    Google Scholar 

  5. Coloma, P.M., Becker, B., Sturkenboom, M.C., van Mulligen, E.M., Kors, J.A.: Evaluating social media networks in medicines safety surveillance: two case studies. Drug Saf. 38(10), 921–30 (2015)

    Article  Google Scholar 

  6. Cone, E.J., Huestis, M.A.: Interpretation of oral fluid tests for drugs of abuse. Ann. New York Acad. Sci. 1098(1), 51–103 (2010)

    Article  Google Scholar 

  7. Dai, Z., Yang, Z., Yang, F., Cohen, W., Salakhutdinov, R.: Good semi-supervised learning that requires a bad GAN. arXiv Preprint arXiv:1705.0978 (2017)

  8. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  10. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  11. Hanson, C.L., Cannon, B., Burton, S., Giraudcarrier, C.: An exploration of social circles and prescription drug abuse through Twitter. J. Med. Int. Res. 15(9), e189 (2013)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  14. Huestis, M.A., Smith, M.L.: Modern analytical technologies for the detection of drug abuse and doping. Drug Discovery Today Technol. 3(1), 49–57 (2007)

    Article  Google Scholar 

  15. Ingraham, C.: Heroin deaths surpass gun homicides for the first time, CDC data shows. The Washington Post (2016). Accessed 8 Dec 2016

    Google Scholar 

  16. Jia, Z., et al.: Tracking the evolution of drug abuse in China, 2003-10: a retrospective, self-controlled study. Addiction 110(S1), 4–10 (2015)

    Article  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  18. Lee, J.G., Jun, S., Cho, Y.W., et al.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017)

    Article  Google Scholar 

  19. Long, E., Lin, H., et al.: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1, 0024 (2017)

    Article  Google Scholar 

  20. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanad dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: CVPR Workshops, pp. 94–101 (2010)

    Google Scholar 

  21. Odena, A.: Semi-supervised learning with generative adversarial networks. In: ICML 2016 Workshop on Data-Efficient Machine Learning (2016)

    Google Scholar 

  22. Peters, F.T., Kraemer, T., Maurer, H.H.: Drug testing in blood: validated negative-ion chemical ionization gas chromatographicc-mass spectrometric assay for determination of amphetamine and methamphetamine enantiomers and its application to toxicology cases. Clin. Chem. 48(9), 1472–1485 (2002)

    Google Scholar 

  23. Phan, N., Chun, S.A., Bhole, M., Geller, J.: Enabling real-time drug abuse detection in Tweets. In: ICDE Workshop (2017)

    Google Scholar 

  24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv Preprint arXiv:1511.06434 (2015)

  25. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 2234–2242 (2016)

    Google Scholar 

  26. Sarker, A., et al.: Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from Twitter. Drug Saf. 39(3), 231–240 (2016)

    Article  Google Scholar 

  27. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  28. Shen, L., Bai, L.: A review on Gabor wavelets for face recognition. Patt. Anal. Appl. 9(2–3), 273–292 (2006)

    Article  MathSciNet  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Stolle, M., Sack, P.M., Thomasius, R.: Substance abuse in children and adolescents - early detection and intervention. Dtsch Arztebl 104(28–29), A2061–A2070 (2007)

    Google Scholar 

  31. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, pp. 4278–4284 (2017)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  33. Zhai, G., Ren, F., Zhang, G., Evison, M.: Facial shape analysis based on Euclidean distance matrix analysis. In: International Conference on Biomedical Engineering and Informatics, pp. 1896–1900 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (61573363), and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (15XNLQ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Hu, J., Zhao, A., Ding, M., Huo, Y., Lu, Z. (2018). InsightGAN: Semi-Supervised Feature Learning with Generative Adversarial Network for Drug Abuse Detection. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04182-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04181-6

  • Online ISBN: 978-3-030-04182-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics