Skip to main content

A Data Augmentation Model Based on Variational Approach

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

  • 2191 Accesses

Abstract

The labeled training data are very rare in actual environment. Generating new data based on given label is one of the most commonly approaches in data augmentation. This paper proposes a new data augmentation model that can extract the deformation features between the given deformation image and the original image. The model generates similar images to the given deformation images according to the deformation feature. The model can keep the new generation images have the same probability distribution as the given deformation images. Experiments on MNIST and CIFAR-10 prove that the new deformation images can get a similar classification accuracy with the given deformation images, which proves that the new sample is effective.

This work was supported by the National Science Foundation of China (Grant No. 61625204), partially supported by the State Key Program of National Science Foundation of China (Grant No. 61432012 and 61432014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baird, H.S.: Document image defect models. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-77281-8_26

    Chapter  MATH  Google Scholar 

  2. Simard, P., Victorri, B., Cun, Y. L., Denker, J.: Tangent Prop: a formalism for specifying selected invariances in an adaptive network. In: International Conference on Neural Information Processing Systems, pp. 895–903 (1991)

    Google Scholar 

  3. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: International Conference on Document Analysis and Recognition, p. 958 (2003)

    Google Scholar 

  4. Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher Iii, J.W., Hansen, L.K.: Dreaming more data: class-dependent distributions over diffeomorphisms for learned data augmentation. In: Computer Science (2015)

    Google Scholar 

  5. Grenander, U.: General Pattern Theory: A Mathematical Study of Regular Structures. Clarendon Press, New York (1993)

    MATH  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  7. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network, pp. 2366–2374 (2014)

    Google Scholar 

  8. Jaitly, N., Hinton, G.E.: Vocal tract length perturbation (VTLP) improves speech recognition. In: ICML Workshop on Deep Learning for Audio, Speech and Language, p. 958 (2013)

    Google Scholar 

  9. Loosli, G., Canu, S., Bottou, L.: Invariant SVM using selective sampling training invariant support vector machines using selective sampling, pp. 301–320 (2014)

    Google Scholar 

  10. Taylor: Modeling human motion using binary latent variables. In: International Conference on Neural Information Processing Systems, pp. 1345–1352 (2006)

    Google Scholar 

  11. Memisevic, R., Hinton, G.: Unsupervised learning of image transformations. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  12. Memisevic, R., Hinton, G.E.: Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Comput. 22(6), 1473–1492 (2010)

    Article  Google Scholar 

  13. Pu, Y., et al.: Adversarial symmetric variational autoencoder (2017)

    Google Scholar 

  14. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models, pp. 1278–1286 (2014)

    Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013)

    Google Scholar 

  16. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning (2016)

    Google Scholar 

  19. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning (2017)

    Google Scholar 

  20. Edwards, H., Storkey, A.: Towards a neural statistician (2016)

    Google Scholar 

  21. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. In: Computer Science (2015)

    Google Scholar 

  22. Graham, B.: Fractional max-pooling. Eprint Arxiv (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, L., Lv, J., Xu, Y. (2018). A Data Augmentation Model Based on Variational Approach. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics