Skip to main content

The Microbiome and Its Contribution to Skin Cancer

Part of the Current Cancer Research book series (CUCR)

Abstract

The skin is the largest human organ and its primary function is to provide a barrier against the external environment. Our world is inhabited by abundant and diverse microbial communities. Therefore, the skin necessarily comes in contact with myriad bacteria, viruses, and fungi. These interactions exert varying effects on symbiotic homeostasis and skin health. For some skin cancers, there is clear evidence of microbial etiological factors. In the skin, the viral pathogens Kaposi sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) and Merkel cell polyomavirus (McPyV) have a causal association with the skin cancers Kaposi sarcoma and Merkel cell carcinoma. Human papillomavirus (HPV) has an epidemiologic association with cutaneous squamous cell carcinoma (cSCC) but a mechanistic basis of viral carcinogenesis has been elusive. Recent advances in high-throughput sequencing technology have enabled investigators to attain increasingly comprehensive censuses of the skin metagenome through space and time. These “culture-free” molecular techniques have been employed to address fundamental questions pertaining to microbial etiologies of carcinogenesis. More recently, researchers are investigating the interplay between the immune system and skin bacterial and fungal microbiome diversity. These new findings may lead to future understandings of the skin microbial milieu and skin cancer risk.

Keywords

  • Squamous cell carcinoma
  • Kaposi sarcoma
  • Merkel cell carcinoma

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Evans AS. Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med 1976;49(2):175–195. PubMed PMID: 782050; PMCID: PMC2595276.

    Google Scholar 

  2. Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell 2016;165(4):854–866. https://doi.org/10.1016/j.cell.2016.04.008. PubMed PMID: 27153496; PMCID: PMC4860256

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A 2015;112(22):E2930–E2938. https://doi.org/10.1073/pnas.1423854112. PubMed PMID: 25964341; PMCID: PMC4460507

    CrossRef  CAS  Google Scholar 

  4. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346(6212):954–959. https://doi.org/10.1126/science.1260144

    CrossRef  CAS  PubMed  Google Scholar 

  5. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266(5192):1865–1869

    CrossRef  CAS  PubMed  Google Scholar 

  6. Moore PS, Chang Y (1995) Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and those without HIV infection. N Engl J Med 332(18):1181–1185. https://doi.org/10.1056/NEJM199505043321801

    CrossRef  CAS  PubMed  Google Scholar 

  7. Cook-Mozaffari P, Newton R, Beral V, Burkitt DP. The geographical distribution of Kaposi’s sarcoma and of lymphomas in Africa before the AIDS epidemic. Br J Cancer 1998;78(11):1521–1528. PubMed PMID: 9836488; PMCID: PMC2063225.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engels EA, Biggar RJ, Hall HI, Cross H, Crutchfield A, Finch JL, Grigg R, Hylton T, Pawlish KS, McNeel TS, Goedert JJ (2008) Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer 123(1):187–194. https://doi.org/10.1002/ijc.23487

    CrossRef  CAS  PubMed  Google Scholar 

  9. Shiels MS, Engels EA. Evolving epidemiology of HIV-associated malignancies. Curr Opin HIV AIDS 2017;12(1):6–11. https://doi.org/10.1097/COH.0000000000000327. PubMed PMID: 27749369; PMCID: PMC5240042

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phipps W, Ssewankambo F, Nguyen H, Saracino M, Wald A, Corey L, Orem J, Kambugu A, Casper C. Gender differences in clinical presentation and outcomes of epidemic Kaposi sarcoma in Uganda. PLoS One 2010;5(11):e13936. https://doi.org/10.1371/journal.pone.0013936. PubMed PMID: 21103057; PMCID: PMC2980479.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bower M, Nelson M, Young AM, Thirlwell C, Newsom-Davis T, Mandalia S, Dhillon T, Holmes P, Gazzard BG, Stebbing J (2005) Immune reconstitution inflammatory syndrome associated with Kaposi’s sarcoma. J Clin Oncol 23(22):5224–5228. https://doi.org/10.1200/JCO.2005.14.597

    CrossRef  CAS  PubMed  Google Scholar 

  12. Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R (2015) Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol 42(2):223–246. https://doi.org/10.1053/j.seminoncol.2014.12.027

    CrossRef  PubMed  Google Scholar 

  13. Rohner E, Wyss N, Heg Z, Faralli Z, Mbulaiteye SM, Novak U, Zwahlen M, Egger M, Bohlius J. HIV and human herpesvirus 8 co-infection across the globe: systematic review and meta-analysis. Int J Cancer 2016;138(1):45–54. https://doi.org/10.1002/ijc.29687. PubMed PMID: 26175054; PMCID: PMC4607648.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  14. Katano H, Sato Y, Kurata T, Mori S, Sata T (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 269(2):335–344. https://doi.org/10.1006/viro.2000.0196

    CrossRef  CAS  PubMed  Google Scholar 

  15. Sharma-Walia N, Paul AG, Bottero V, Sadagopan S, Veettil MV, Kerur N, Chandran B. Kaposi’s sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 2010;6(2):e1000777. https://doi.org/10.1371/journal.ppat.1000777. PubMed PMID: 20169190; PMCID: PMC2820536.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mariggio G, Koch S, Zhang G, Weidner-Glunde M, Ruckert J, Kati S, Santag S, Schulz TF. Kaposi sarcoma herpesvirus (KSHV) latency-associated nuclear antigen (LANA) recruits components of the MRN (Mre11-Rad50-NBS1) repair complex to modulate an innate immune signaling pathway and viral latency. PLoS Pathog 2017;13(4):e1006335. https://doi.org/10.1371/journal.ppat.1006335. PubMed PMID: 28430817; PMCID: PMC5415203.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  17. Grossmann C, Podgrabinska S, Skobe M, Ganem D. Activation of NF-kappaB by the latent vFLIP gene of Kaposi’s sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol 2006;80(14):7179–7185. https://doi.org/10.1128/JVI.01603-05. PubMed PMID: 16809323; PMCID: PMC1489050.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden K, Paterson H, Weiss RA, Mittnacht S (1996) Cyclin encoded by KS herpesvirus. Nature 382(6590):410. https://doi.org/10.1038/382410a0

    CrossRef  CAS  PubMed  Google Scholar 

  19. Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Kishishita M, Brady JN, Doniger J, Medveczky P, Rosenthal LJ. Identification of Kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 1998;72(6):4980–4988. PubMed PMID: 9573267; PMCID: PMC110060.

    Google Scholar 

  20. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319(5866):1096–1100

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gross L (1953) A filterable agent, recovered from Ak leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc Soc Exp Biol Med 83(2):414–421

    CrossRef  CAS  PubMed  Google Scholar 

  22. Harms KL, Healy MA, Nghiem P, Sober AJ, Johnson TM, Bichakjian CK, Wong SL (2016) Analysis of prognostic factors from 9387 Merkel cell carcinoma cases forms the basis for the new 8th edition AJCC staging system. Ann Surg Oncol 23(11):3564–3571. https://doi.org/10.1245/s10434-016-5266-4

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Agelli M, Clegg LX, Becker JC, Rollison DE (2010) The etiology and epidemiology of Merkel cell carcinoma. Curr Probl Cancer 34(1):14–37. https://doi.org/10.1016/j.currproblcancer.2010.01.001

    CrossRef  PubMed  Google Scholar 

  24. Albores-Saavedra J, Batich K, Chable-Montero F, Sagy N, Schwartz AM, Henson DE (2010) Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol 37(1):20–27. https://doi.org/10.1111/j.1600-0560.2009.01370.x

    CrossRef  PubMed  Google Scholar 

  25. Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu YM, Dhanasekaran SM, Palanisamy N, Siddiqui J, Cao X, Su F, Wang R, Xiao H, Kunju LP, Mehra R, Tomlins SA, Fullen DR, Bichakjian CK, Johnson TM, Dlugosz AA, Chinnaiyan AM. The distinctive mutational spectra of polyomavirus-negative merkel cell carcinoma. Cancer Res 2015;75(18):3720–3727. https://doi.org/10.1158/0008-5472.CAN-15-0702. PubMed PMID: 26238782; PMCID: PMC4573907.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mauzo SH, Ferrarotto R, Bell D, Torres-Cabala CA, Tetzlaff MT, Prieto VG, Aung PP (2016) Molecular characteristics and potential therapeutic targets in Merkel cell carcinoma. J Clin Pathol 69(5):382–390. https://doi.org/10.1136/jclinpath-2015-203467

    CrossRef  PubMed  Google Scholar 

  27. Wang L, Harms PW, Palanisamy N, Carskadon S, Cao X, Siddiqui J, Patel RM, Zelenka-Wang S, Durham AB, Fullen DR, Harms KL, Su F, Shukla S, Mehra R, Chinnaiyan AM. Age and Gender associations of virus positivity in Merkel cell carcinoma characterized using a novel RNA in situ hybridization assay. Clin Cancer Res 2017;23(18):5622–5630. https://doi.org/10.1158/1078-0432.CCR-17-0299. PubMed PMID: 28606924; PMCID: PMC5600832.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Church CD, Nghiem P. How does the Merkel polyomavirus lead to a lethal cancer? Many answers, many questions, and a new mouse modelJ Invest Dermatol 2015;135(5):1221–1224. https://doi.org/10.1038/jid.2015.4. PubMed PMID: 25882464; PMCID: PMC4402710.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Gonzalez-Vela MD, Curiel-Olmo S, Derdak S, Beltran S, Santibanez M, Martinez N, Castillo-Trujillo A, Gut M, Sanchez-Pacheco R, Almaraz C, Cereceda L, Llombart B, Agraz-Doblas A, Revert-Arce J, Lopez Guerrero JA, Mollejo M, Marron PI, Ortiz-Romero P, Fernandez-Cuesta L, Varela I, Gut I, Cerroni L, Piris MA, Vaque JP (2017) Shared oncogenic pathways implicated in both virus-positive and UV-induced Merkel cell carcinomas. J Invest Dermatol 137(1):197–206. https://doi.org/10.1016/j.jid.2016.08.015

    CrossRef  CAS  PubMed  Google Scholar 

  30. Verhaegen ME, Mangelberger D, Harms PW, Vozheiko TD, Weick JW, Wilbert DM, Saunders TL, Ermilov AN, Bichakjian CK, Johnson TM, Imperiale MJ, Dlugosz AA. Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol 2015;135(5):1415–1424. https://doi.org/10.1038/jid.2014.446. PubMed PMID: 25313532; PMCID: PMC4397111.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Verhaegen ME, Mangelberger D, Harms PW, Eberl M, Wilbert DM, Meireles J, Bichakjian CK, Saunders TL, Wong SY, Dlugosz AA. Merkel cell polyomavirus small T antigen initiates Merkel cell carcinoma-like tumor development in mice. Cancer Res 2017;77(12):3151–3157. https://doi.org/10.1158/0008-5472.CAN-17-0035. PubMed PMID: 28512245; PMCID: PMC5635997.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Afanasiev OK, Nagase K, Simonson W, Vandeven N, Blom A, Koelle DM, Clark R, Nghiem P. Vascular E-selectin expression correlates with CD8 lymphocyte infiltration and improved outcome in Merkel cell carcinoma. J Invest Dermatol 2013;133(8):2065–2073. https://doi.org/10.1038/jid.2013.36. PubMed PMID: 23353989; PMCID: PMC3644376.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Richards KF, Guastafierro A, Shuda M, Toptan T, Moore PS, Chang Y. Merkel cell polyomavirus T antigens promote cell proliferation and inflammatory cytokine gene expression. J Gen Virol 2015;96(12):3532–3544. https://doi.org/10.1099/jgv.0.000287. PubMed PMID: 26385761; PMCID: PMC4804762.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Houben R, Shuda M, Weinkam R, Schrama D, Feng H, Chang Y, Moore PS, Becker JC. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol 2010;84(14):7064–7072. https://doi.org/10.1128/JVI.02400-09. PubMed PMID: 20444890; PMCID: PMC2898224.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen T, Hedman L, Mattila PS, Jartti T, Ruuskanen O, Soderlund-Venermo M, Hedman K (2011) Serological evidence of Merkel cell polyomavirus primary infections in childhood. J Clin Virol 50(2):125–129. https://doi.org/10.1016/j.jcv.2010.10.015

    CrossRef  CAS  PubMed  Google Scholar 

  36. Tolstov YL, Pastrana DV, Feng H, Becker JC, Jenkins FJ, Moschos S, Chang Y, Buck CB, Moore PS. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer 2009;125(6):1250–1256. https://doi.org/10.1002/ijc.24509. PubMed PMID: 19499548; PMCID: PMC2747737.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewandowsky F, Lutz W (1922) Ein Fall einer bisher nicht beschriebenen Hauterkrankung (Epidermodysplasia verruciformis). Arch Dermatol Syph 141:193–203

    CrossRef  Google Scholar 

  38. Pass F, Reissig M, Shah KV, Eisinger M, Orth G (1977) Identification of an immunologically distinct papillomavirus from lesions of epidermodysplasia verruciformis. J Natl Cancer Inst 59(4):1107–1112

    CrossRef  CAS  PubMed  Google Scholar 

  39. Orth G, Jablonska S, Favre M, Croissant O, Jarzabek-Chorzelska M, Rzesa G. Characterization of two types of human papillomaviruses in lesions of epidermodysplasia verruciformis. Proc Natl Acad Sci U S A 1978;75(3):1537–1541. PubMed PMID: 206906; PMCID: PMC411508.

    CrossRef  CAS  Google Scholar 

  40. Jablonska S, Dabrowski J, Jakubowicz K (1972) Epidermodysplasia verruciformis as a model in studies on the role of papovaviruses in oncogenesis. Cancer Res 32(3):583–589

    CAS  PubMed  Google Scholar 

  41. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 1983;80(12):3812–3815. PubMed PMID: 6304740; PMCID: PMC394142.

    CrossRef  CAS  Google Scholar 

  42. Deady S, Sharp L, Comber H (2014) Increasing skin cancer incidence in young, affluent, urban populations: a challenge for prevention. Br J Dermatol 171(2):324–331. https://doi.org/10.1111/bjd.12988

    CrossRef  CAS  PubMed  Google Scholar 

  43. de Vries E, van de Poll-Franse LV, Louwman WJ, de Gruijl FR, Coebergh JW (2005) Predictions of skin cancer incidence in the Netherlands up to 2015. Br J Dermatol 152(3):481–488. https://doi.org/10.1111/j.1365-2133.2005.06386.x

    CrossRef  PubMed  Google Scholar 

  44. Robsahm TE, Helsing P, Veierod MB. Cutaneous squamous cell carcinoma in Norway 1963–2011: increasing incidence and stable mortality. Cancer Med 2015;4(3):472–480. https://doi.org/10.1002/cam4.404. PubMed PMID: 25620456; PMCID: PMC4380972.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Werner RN, Sammain A, Erdmann R, Hartmann V, Stockfleth E, Nast A (2013) The natural history of actinic keratosis: a systematic review. Br J Dermatol 169(3):502–518. https://doi.org/10.1111/bjd.12420

    CrossRef  CAS  PubMed  Google Scholar 

  46. Muzic JG, Schmitt AR, Wright AC, Alniemi DT, Zubair AS, Olazagasti Lourido JM, Sosa Seda IM, Weaver AL, Baum CL. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: a population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc 2017;92(6):890–898. https://doi.org/10.1016/j.mayocp.2017.02.015. PubMed PMID: 28522111; PMCID: PMC5535132.

    CrossRef  PubMed  Google Scholar 

  47. Jung GW, Metelitsa AI, Dover DC, Salopek TG (2010) Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007. Br J Dermatol 163(1):146–154. https://doi.org/10.1111/j.1365-2133.2010.09809.x

    CrossRef  CAS  PubMed  Google Scholar 

  48. Green AC, Olsen CM (2017) Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol 177(2):373–381. https://doi.org/10.1111/bjd.15324

    CrossRef  CAS  PubMed  Google Scholar 

  49. Aldabagh B, Angeles JG, Cardones AR, Arron ST. Cutaneous squamous cell carcinoma and human papillomavirus: is there an association? Dermatol Surg 2013;39(1 Pt 1):1–23. https://doi.org/10.1111/j.1524-4725.2012.02558.x. PubMed PMID: 22928516; PMCID: PMC3521067.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Chahoud J, Semaan A, Chen Y, Cao M, Rieber AG, Rady P, Tyring SK (2016) Association between beta-genus human papillomavirus and cutaneous squamous cell carcinoma in immunocompetent individuals—a meta-analysis. JAMA Dermatol 152(12):1354–1364. https://doi.org/10.1001/jamadermatol.2015.4530

    CrossRef  PubMed  Google Scholar 

  51. Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol 2014;70(4):621–629. https://doi.org/10.1016/j.jaad.2014.01.857. PubMed PMID: 24629358; PMCID: PMC3959664.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Nichols AJ, Allen AH, Shareef S, Badiavas EV, Kirsner RS, Ioannides T. Association of human papillomavirus vaccine with the development of keratinocyte carcinomas. JAMA Dermatol 2017;153(6):571–574. https://doi.org/10.1001/jamadermatol.2016.5703. PubMed PMID: 28196178; PMCID: PMC5540031

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010;401(1):70–79. https://doi.org/10.1016/j.virol.2010.02.002. PubMed PMID: 20206957; PMCID: PMC3400342.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Van Doorslaer K, Tan Q, Xirasagar S, Bandaru S, Gopalan V, Mohamoud Y, Huyen Y, McBride AA. The papillomavirus episteme: a central resource for papillomavirus sequence data and analysis. Nucleic Acids Res 2013;41(Database issue):D571–D578. https://doi.org/10.1093/nar/gks984. PubMed PMID: 23093593; PMCID: PMC3531071.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989;8(12):3905–3910. PubMed PMID: 2555178; PMCID: PMC402081.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  56. Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989;63(10):4417–4421. PubMed PMID: 2476573; PMCID: PMC251060.

    Google Scholar 

  57. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937

    CrossRef  CAS  PubMed  Google Scholar 

  58. Moody C. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses 2017;9(9). https://doi.org/10.3390/v9090261. PubMed PMID: 28925973; PMCID: PMC5618027.

    CrossRef  PubMed Central  CAS  Google Scholar 

  59. IARC (2007) Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 90:1–636

    Google Scholar 

  60. Weissenborn SJ, Nindl I, Purdie K, Harwood C, Proby C, Breuer J, Majewski S, Pfister H, Wieland U. Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J Invest Dermatol 2005;125(1):93–97. https://doi.org/10.1111/j.0022-202X.2005.23733.x. JID23733 [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  61. Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol 2011;131(8):1745–1753. https://doi.org/10.1038/jid.2011.91. PubMed PMID: 21490616; PMCID: PMC3136639.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Dimon MT, Wood HM, Rabbitts PH, Liao W, Cho RJ, Arron ST. No evidence for integrated viral DNA in the genome sequence of cutaneous squamous cell carcinoma. J Invest Dermatol 2014;134(7):2055–2057. https://doi.org/10.1038/jid.2014.52. PubMed PMID: 24480882; PMCID: PMC4057961.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Ganzenmueller T, Yakushko Y, Kluba J, Henke-Gendo C, Gutzmer R, Schulz TF (2012) Next-generation sequencing fails to identify human virus sequences in cutaneous squamous cell carcinoma. Int J Cancer 131(7):E1173–E1179. https://doi.org/10.1002/ijc.27581

    CrossRef  CAS  PubMed  Google Scholar 

  64. Marcuzzi GP, Hufbauer M, Kasper HU, Weissenborn SJ, Smola S, Pfister H. Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. J Gen Virol 2009;90(Pt 12):2855–2864. https://doi.org/10.1099/vir.0.012872-0. vir.0.012872-0 [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  65. White EA, Walther J, Javanbakht H, Howley PM. Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes. J Virol 2014;88(15):8201–8212. https://doi.org/10.1128/JVI.01197-14. JVI.01197-14 [pii]

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  66. Meyers JM, Uberoi A, Grace M, Lambert PF, Munger K. Cutaneous HPV8 and MmuPV1 E6 proteins target the NOTCH and TGF-beta tumor suppressors to inhibit differentiation and sustain keratinocyte proliferation. PLoS Pathog 2017;13(1):e1006171. https://doi.org/10.1371/journal.ppat.1006171. PubMed PMID: 28107544; PMCID: PMC5287491.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  67. Vinzon SE, Braspenning-Wesch I, Muller M, Geissler EK, Nindl I, Grone HJ, Schafer K, Rosl F. Protective vaccination against papillomavirus-induced skin tumors under immunocompetent and immunosuppressive conditions: a preclinical study using a natural outbred animal model. PLoS Pathog 2014;10(2):e1003924. https://doi.org/10.1371/journal.ppat.1003924. PubMed PMID: 24586150; PMCID: PMC3930562.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  68. Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B. Skin microbiota: microbial community structure and its potential association with health and disease. Infect Genet Evol 2011;11(5):839–848. https://doi.org/10.1016/j.meegid.2011.03.022. PubMed PMID: 21463709; PMCID: PMC3114449.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, Berg-Lyon D, Ackermann G, Moeller Christensen GJ, Nakatsuji T, Zhang L, Borkowski AW, Meehan MJ, Dorrestein K, Gallo RL, Bandeira N, Knight R, Alexandrov T, Dorrestein PC. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A 2015;112(17):E2120–E2129. https://doi.org/10.1073/pnas.1424409112. PubMed PMID: 25825778; PMCID: PMC4418856.

    CrossRef  CAS  Google Scholar 

  70. Pereira SG, Moura J, Carvalho E, Empadinhas N. Microbiota of chronic diabetic wounds: ecology, impact, and potential for innovative treatment strategies. Front Microbiol 2017;8:1791. https://doi.org/10.3389/fmicb.2017.01791. PubMed PMID: 28983285. PMCID: PMC5613173.

  71. Oh J, Freeman AF, Program NCS, Park M, Sokolic R, Candotti F, Holland SM, Segre JA, Kong HH. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 2013;23(12):2103–2114. https://doi.org/10.1101/gr.159467.113. PubMed PMID: 24170601; PMCID: PMC3847779

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G, Contreras M, Noya-Alarcon O, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF, Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG. The microbiome of uncontacted Amerindians Sci Adv 2015;1(3). https://doi.org/10.1126/sciadv.1500183. PubMed PMID: 26229982; PMCID: PMC4517851.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  73. Leung MHY, Tong X, Wilkins D, Cheung HHL, Lee PKH. Individual and household attributes influence the dynamics of the personal skin microbiota and its association network. Microbiome 2018;6(1):https://doi.org/10.1186/s40168-018-0412-9. PubMed PMID: 29394957. PMCID: PMC5797343.

  74. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol 2013;21(12):660–668. https://doi.org/10.1016/j.tim.2013.10.001. PubMed PMID: 24238601; PMCID: PMC4744460.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  75. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature 2012;486(7402):207–214. https://doi.org/10.1038/nature11234. PubMed PMID: 22699609; PMCID: PMC3564958 .

  76. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. Topographical and temporal diversity of the human skin microbiome. Science 2009;324(5931):1190–1192. https://doi.org/10.1126/science.1171700. PubMed PMID: 19478181; PMCID: PMC2805064.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Christensen GJ, Bruggemann H (2014) Bacterial skin commensals and their role as host guardians. Benef Microbes 5(2):201–215. https://doi.org/10.3920/BM2012.0062

    CrossRef  CAS  PubMed  Google Scholar 

  78. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science 2009;326(5960):1694–1697. https://doi.org/10.1126/science.1177486. PubMed PMID: 19892944; PMCID: PMC3602444.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bastos MC, Ceotto H, Coelho ML, Nascimento JS (2009) Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr Pharm Biotechnol 10(1):38–61

    CrossRef  CAS  PubMed  Google Scholar 

  80. Gribbon EM, Cunliffe WJ, Holland KT (1993) Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol 139(8):1745–1751. https://doi.org/10.1099/00221287-139-8-1745

    CrossRef  CAS  PubMed  Google Scholar 

  81. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, Conlan S, Himmelfarb S, Byrd AL, Deming C, Quinones M, Brenchley JM, Kong HH, Tussiwand R, Murphy KM, Merad M, Segre JA, Belkaid Y. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 2015;520(7545):104-108. https://doi.org/10.1038/nature14052. PubMed PMID: 25539086; PMCID: PMC4667810.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  82. Geoghegan JA, Irvine AD, Foster TJ (2017) Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. https://doi.org/10.1016/j.tim.2017.11.008

    CrossRef  CAS  PubMed  Google Scholar 

  83. Totte JE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SG (2016) Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol 175(4):687–695. https://doi.org/10.1111/bjd.14566

    CrossRef  CAS  PubMed  Google Scholar 

  84. Cheng J, Zens MS, Duell E, Perry AE, Chapman MS, Karagas MR. History of allergy and atopic dermatitis in relation to squamous cell and basal cell carcinoma of the skin. Cancer Epidemiol Biomark Prev 2015;24(4):749–754. https://doi.org/10.1158/1055-9965.EPI-14-1243. PubMed PMID: 25670807; PMCID: PMC4383698.

    CrossRef  CAS  Google Scholar 

  85. Cho JM, Davis DMR, Wetter DA, Bartley AC, Brewer JD (2018) Association between atopic dermatitis and squamous cell carcinoma: a case-control study. Int J Dermatol 57(3):313–316. https://doi.org/10.1111/ijd.13857

    CrossRef  PubMed  Google Scholar 

  86. Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, Li K, Methe BA, Blaser MJ. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 2013;1(1):https://doi.org/10.1186/2049-2618-1-31. PubMed PMID: 24451201; PMCID: PMC4177411.

  87. Kimball AB, Sundaram M, Cloutier M, Gauthier-Loiselle M, Gagnon-Sanschagrin P, Guerin A, Ganguli A (2018) Increased prevalence of cancer in adult patients with psoriasis in the United States: a claims based analysis. J Drugs Dermatol 17(2):180–186

    PubMed  Google Scholar 

  88. Jourabchi N, Fischer AH, Cimino-Mathews A, Waters KM, Okoye GA (2017) Squamous cell carcinoma complicating a chronic lesion of hidradenitis suppurativa: a case report and review of the literature. Int Wound J 14(2):435–438. https://doi.org/10.1111/iwj.12671

    CrossRef  PubMed  Google Scholar 

  89. Ring HC, Bay L, Kallenbach K, Miller IM, Prens E, Saunte DM, Bjarnsholt T, Jemec GB (2017) Normal skin microbiota is altered in pre-clinical Hidradenitis suppurativa. Acta Derm Venereol 97(2):208–213. https://doi.org/10.2340/00015555-2503

    CrossRef  CAS  PubMed  Google Scholar 

  90. Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L, Riis PT, Larsen N, Andersen LO, Nielsen HV, Miller IM, Bjarnsholt T, Fuursted K, Jemec GB. The follicular skin microbiome in patients with Hidradenitis suppurativa and healthy controls. JAMA Dermatol 2017;153(9):897–905. https://doi.org/10.1001/jamadermatol.2017.0904. PubMed PMID: 28538949; PMCID: PMC5710430

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, Zhou W, Oh J, Otto M, Fenical W, Gallo RL. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 2018;4(2):eaao4502. https://doi.org/10.1126/sciadv.aao4502. PubMed PMID: 29507878; PMCID: PMC5834004.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah T. Arron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coggshall, K., Brooks, L., Nagarajan, P., Arron, S.T. (2019). The Microbiome and Its Contribution to Skin Cancer. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)