Skip to main content

Clearance of Pulmonary Secretions After Lung Transplantation

  • Chapter
  • First Online:
Book cover Difficult Decisions in Cardiothoracic Critical Care Surgery

Abstract

Lung transplantation is a well established treatment option for selected patients with endstage pulmonary diseases (Weill et al., J Heart Lung Transplant. 2015;34(1):1–15). Bronchial and pulmonary secretions after lung transplantation are a common cause of post-operative morbidity for recipients (Duarte and Lick, Chest Surg Clin N Am. 2002;12(2):397–416). Their clinical impact may frequently be underestimated and this can lead to significant complications. Consequently, patients may experience potential delays in their overall recovery after lung transplantation. As outcomes after lung transplantation have significantly improved over the last decade, this complex therapeutic strategy has become more prevalent (Chambers et al., J Heart Lung Transplant. 2017;36:1047–1059). With increasing clinical encounters with these challenging patients, it is essential for critical care physicians and allied providers to have applied knowledge and adequate skill sets to support lung recipients during the recovery. This is particularly important in the immediate post-operative phase and crucial after extubation. This review defines such pulmonary secretions and the pathophysiology involved. We provide a review of the applicable evidence available in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weill D, Benden C, Corris PA, et al. A consensus document for the selection of lung transplant candidates: 2014 – an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2015;34(1):1–15.

    Article  PubMed  Google Scholar 

  2. Duarte AG, Lick S. Perioperative care of the lung transplant patient. Chest Surg Clin N Am. 2002;12(2):397–416.

    Article  PubMed  Google Scholar 

  3. Chambers DC, Yusen RD, Cherilch WS, et al. The Registry of the International Society of Heart and Lung Transplantation: Thirty-fourth Adult Lung and Heart-lung transplantation report – 2017; focus theme: Allograft ischemia time. J Heart Lung Transplant. 2017;36:1047–59.

    Article  PubMed  Google Scholar 

  4. Riou B, Guesde R, Jacquens Y, Duranteau R, Viars P. Fiberoptic bronchoscopy in brain-dead organ donors. Am J Respir Crit Care Med. 1994;150(2):558–60.

    Article  CAS  PubMed  Google Scholar 

  5. Avlonitis VS, Krause A, Luzzi L, et al. Bacterial colonization of the donor lower airways is a predictor of poor outcome in lung transplantation. Eur J Cardiothorac Surg. 2003;24(4):601–7.

    Article  PubMed  Google Scholar 

  6. Ruiz I, Gavalda J, Monforte V, et al. Donor-to-host transmission of bacterial and fungal infections in lung transplantation. Am J Transplant. 2006;6(1):178–82.

    Article  CAS  PubMed  Google Scholar 

  7. Botha P, Fisher AJ, Dark JH. Marginal lung donors: a diminishing margin of safety? Transplantation. 2006;82(10):1273–9.

    Article  PubMed  Google Scholar 

  8. Bellon H, Vandermeulen E, Verleden SE, et al. The effect of immunosuppression on airway integrity. Transplantation. 2017;101(12):2855–61.

    Article  CAS  PubMed  Google Scholar 

  9. Herve P, Silbert D, Cerrina J, Simonneau G, Dartevelle P, The Paris-Sud Lung Transplant Group. Impairment of bronchial mucociliary clearance in long-term survivors of heart/lung and double-lung transplantation. Chest. 1993;103(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  10. Higenbottam T, Jackson M, Woolman P, Lowry R, Wallwork J. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients. Am Rev Respir Dis. 1989;140(1):58–61.

    Article  CAS  PubMed  Google Scholar 

  11. Duarte AG, Terminella L, Smith JT, Myers AC, Campbell G, Lick S. Restoration of cough reflex in lung transplant recipients. Chest. 2008;134(2):310–6.

    Article  PubMed  Google Scholar 

  12. Canning BJ, Mori N, Mazzone SB. Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol. 2006;152(3):223–42.

    Article  PubMed  Google Scholar 

  13. Iber C, Simon P, Skatrud JB, Mahowald MW, Dempsey JA. The Breuer-Hering reflex in humans. Effects of pulmonary denervation and hypocapnia. Am J Respir Crit Care Med. 1995;152(1):217–24.

    Article  CAS  PubMed  Google Scholar 

  14. Brody JS, Klempfner G, Staum MM, Vidyasagar D, Kuhl DE, Waldhausen JA. Mucociliary clearance after lung denervation and bronchial transection. J Appl Physiol. 1972;32(2):160–4.

    Article  CAS  PubMed  Google Scholar 

  15. Nadel JA. Autonomic control of airway smooth muscle and airway secretions. Am Rev Respir Dis. 1977;115(6 Pt 2):117–26.

    CAS  PubMed  Google Scholar 

  16. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pintucci JP, Corno S, Garotta M. Biofilms and infections of the upper respiratory tract. Eur Rev Med Pharmacol Sci. 2010;14(8):683–90.

    CAS  PubMed  Google Scholar 

  18. Lee AL, Burge AT, Holland AE. Airway clearance techniques for bronchiectasis. Cochrane Database Syst Rev. 2015;11:CD008351.

    Google Scholar 

  19. Baumann B, Byers S, Wasserman-Wincko T, et al. Postoperative swallowing assessment after lung transplantation. Ann Thorac Surg. 2017;104(1):308–12.

    Article  PubMed  Google Scholar 

  20. Jiang C, Esquinas A, Mina B. Evaluation of cough peak expiratory flow as a predictor of successful mechanical ventilation discontinuation: a narrative review of the literature. J Intensive Care. 2017;5:33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rose L, Adhikari NK, Leasa D, Fergusson DA, McKim D. Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation. Cochrane Database Syst Rev. 2017;1:CD011833.

    PubMed  Google Scholar 

  22. Wanner A. Does chest physical therapy move airway secretions? Am Rev Respir Dis. 1984;130(5):701–2.

    CAS  PubMed  Google Scholar 

  23. Warnock L, Gates A. Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis. Cochrane Database Syst Rev. 2015;12:CD001401.

    Google Scholar 

  24. Raidal SL, Love DN, Bailey GD. Effects of posture and accumulated airway secretions on tracheal mucociliary transport in the horse. Aust Vet J. 1996;73(2):45–9.

    Article  CAS  PubMed  Google Scholar 

  25. Narayanan AL, Hamid SR, Supriyanto E. Evidence regarding patient compliance with incentive spirometry interventions after cardiac, thoracic and abdominal surgeries: a systematic literature review. Can J Respir Ther. 2016;52(1):17–26.

    PubMed  PubMed Central  Google Scholar 

  26. Freitas ER, Soares BG, Cardoso JR, Atallah AN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2007;3:CD004466.

    Google Scholar 

  27. Langenderfer B. Alternatives to percussion and postural drainage. A review of mucus clearance therapies: percussion and postural drainage, autogenic drainage, positive expiratory pressure, flutter valve, intrapulmonary percussive ventilation, and high-frequency chest compression with the ThAIRapy Vest. J Cardpulm Rehabil. 1998;18(4):283–9.

    Article  CAS  Google Scholar 

  28. Konstan MW, Stern RC, Doershuk CF. Efficacy of the flutter device for airway mucus clearance in patients with cystic fibrosis. J Pediatr. 1994;124(5 Pt 1):689–93.

    Article  CAS  PubMed  Google Scholar 

  29. Sathe NA, Krishnaswami S, Andrews J, Ficzere C, McPheeters ML. Pharmacologic agents that promote airway clearance in hospitalized subjects: a systematic review. Respir Care. 2015;60(7):1061–70.

    Article  PubMed  Google Scholar 

  30. Wark PA, McDonald V. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev. 2003;1:CD001506.

    Google Scholar 

  31. Bennett WD, Wu J, Fuller F, et al. Duration of action of hypertonic saline on mucociliary clearance in the normal lung. J Appl Physiol. 2015;118(12):1483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Safdar A, Shelburne SA, Evans SE, Dickey BF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf. 2009;8(4):435–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henderson AG, Ehre C, Button B, et al. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest. 2014;124(7):3047–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Puchelle E, Zahm JM, de Bentzmann S, et al. Effects of rhDNase on purulent airway secretions in chronic bronchitis. Eur Respir J. 1996;9(4):765–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yang C, Chilvers M, Montgomery M, Nolan SJ. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2016;4:CD001127.

    PubMed  Google Scholar 

  36. Hardy KA, Anderson BD. Noninvasive clearance of airway secretions. Respir Care Clin N Am. 1996;2(2):323–45.

    CAS  PubMed  Google Scholar 

  37. Sivasothy P, Brown L, Smith IE, Shneerson JM. Effect of manually assisted cough and mechanical insufflation on cough flow of normal subjects, patients with chronic obstructive pulmonary disease (COPD), and patients with respiratory muscle weakness. Thorax. 2001;56(6):438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Branson RD. Secretion management in the mechanically ventilated patient. Respir Care. 2007;52(10):1328–42. discussion 1342–1327

    PubMed  Google Scholar 

  39. Freytag CC, Thies FL, König W, Welte T. Prolonged application of closed in-line suction catheters increases microbial colonization of the lower respiratory tract and bacterial growth on catheter surface. Infection. 2003;31(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  40. Mahata D, Nag A, Mandal SM, Nando GB. Antibacterial coating on in-line suction respiratory catheter to inhibit the bacterial biofilm formation using renewable cardanyl methacrylate copolymer. J Biomater Sci Polym Ed. 2017;28(4):365–79.

    Article  CAS  PubMed  Google Scholar 

  41. Panchabhai TS, Mukhopadhyay S, Sehgal S, Bandyopadhyay D, Erzurum SC, Mehta AC. Plugs of the air passages: a clinicopathologic review. Chest. 2016;150(5):1141–57.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Høiby N, Ciofu O, Johansen HK, et al. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3(2):55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wimberley N, Faling LJ, Bartlett JG. A fiberoptic bronchoscopy technique to obtain uncontaminated lower airway secretions for bacterial culture. Am Rev Respir Dis. 1979;119(3):337–43.

    CAS  PubMed  Google Scholar 

  44. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57(3):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizgerd JP. Acute lower respiratory tract infection. N Engl J Med. 2008;358(7):716–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Wigfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wigfield, C.H., Mehta, A., Alex, C. (2019). Clearance of Pulmonary Secretions After Lung Transplantation. In: Lonchyna, V. (eds) Difficult Decisions in Cardiothoracic Critical Care Surgery. Difficult Decisions in Surgery: An Evidence-Based Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-04146-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04146-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04145-8

  • Online ISBN: 978-3-030-04146-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics