Skip to main content

Poisson Equation Solution and Its Gradient Vector Field to Geometric Features Detection

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2018)

Abstract

In this paper we solve the Poisson partial differential equation (PDE) with a free right side, which is a function of the image and its gradient. We call such a PDE Poisson Image (PI) equation. Further, we define the function \(\phi ={u+\left\| \nabla u\right\| }^2\), where u is the PI’s solution. Then, we generate the Poisson gradient vector fields (PGVFs) \(\nabla u\) and \(\nabla \phi \) and study the patterns of their trajectories in the vicinity of the singular points (SPs). Next, we use the critical points (CPs) of u and \(\phi \), the SPs of \(\nabla u\) and \( \nabla \phi \), and their relations, to determine the image objects’ concavities and convexities, and use them for automatic objects partitioning. We validated the theoretical concepts with experiments on above 80 synthetic and real-life images, and show some of them in the paper. At the end we compare the new method with contemporary methods in the field and list its contributions, advantages and bottlenecks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  Google Scholar 

  2. Sirakov, N.M.: A new active convex hull model for image regions. J. Math. Imaging Vis. 26, 309–325 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bowden, A., Todorov, D., Sirakov, N.M.: Implementation of the Euler-Lagrange and Poisson equations to extract one connected region. In: Proceedings of AMiTANs, vol. 1629, pp. 400–407. American Institute of Physics (2014). https://doi.org/10.1063/1.4902301

  4. Bowden, A., Sirakov, M.N.: Applications of the Euler-Lagrange Poisson active contour in vector fields, overcoming noise, and line integrals. Dyn. Contin., Discret. Impuls. Syst. Ser. B Appl. Algorithms 23, 59–73 (2016)

    Google Scholar 

  5. Li, B., Acton, B.: Active contour external force using vector field convolution for image segmentation. IEEE TIP 16(8), 2096–2106 (2007)

    MathSciNet  Google Scholar 

  6. Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: calculus of variations or shape gradients? SIAM J. Appl. Math. 63(6), 2128–2154 (2003)

    Article  MathSciNet  Google Scholar 

  7. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the Poisson equation. IEEE Trans. PAMI 28, 1991–2005 (2007)

    Article  Google Scholar 

  8. Tari, S., Genctav, M.: From a non-local ambrosio-tortorelli phase field to a randomized part hierarchy tree. JMIV 49(1), 69–86 (2014)

    Article  Google Scholar 

  9. Sosinsky, Vector fields on the plane (2015). http://ium.mccme.ru/postscript/s16/topology1-Lec7.pdf

  10. Ferreira, N., Klosowski, J.T., Scheidegger, C.E., Silva, C.T.: Vector field k-means: clustering trajectories by fitting multiple vector fields. Comput. Graph. Forum 32(3), 201–210 (2013)

    Article  Google Scholar 

  11. Zhang, E., Konstantin, M., Greg, T.: Vector fields design on surfaces. ACM Trans. Graph. 25(4), 1294–1326 (2006)

    Article  Google Scholar 

  12. Wei, L., Eraldo, R.: Detecting singular patterns in 2-D vector fields using weighted Laurent polynomial. Pattern Recogn. 45(11), 3912–3925 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the anonymous reviewers for the useful notes, to A. Bowden for providing the active contour code, and Dr. M. Celik and Dr. T. Wang for the useful discussions on CPs and SPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Metodiev Sirakov .

Editor information

Editors and Affiliations

Appendix. Proof Theorem 1

Appendix. Proof Theorem 1

Consider that \(u_x=u_y=0\), and \(\phi _x, \phi _y, \phi _{xx}, \phi _{yy}, \phi _{xy}\) and

$$\begin{aligned} \begin{aligned} D_{{\phi }}&={\phi }_{xx}{\phi }_{yy}-{\phi }_{xy}^2 =(u_{xx}+2{u^2_{xx}}+2{u^2_{xy}})(u_{yy}+2{u^2_{yy}}+2{u^2_{xy}})-\\&-(u_{xy}+2({u_{xx}}+{u_{yy}}){u_{xy}})^2. \end{aligned} \end{aligned}$$
(5)

Part I.1. Given that u(cd) is a local maximum at some \((c,d) \in \varOmega \). Hence \(u_{xx}<0\), \(u_{yy}<0\), and \(D_u(c,d)=u_{xx} u_{yy} -u_{xy}^2 >0\) at (cd).

Case (a): Assume \(u_{xx}-u_{yy}=0\). Follows that

$$\begin{aligned} u_{xx} (c,d)=u_{yy} (c,d) = {f(c,d)} /{2}<0; \end{aligned}$$
(6)
$$\begin{aligned} u_{xx} (c,d)u_{yy} (c,d) = {f^2(c,d)}/ {4}>u^2_{xy} (c,d). \end{aligned}$$
(7)
$$\begin{aligned} \begin{aligned} D_{{\phi }}(c,d)= {f^2} (f+1)^2 / {4} - u_{xy}^2(2f^2+2f+1)+4u_{xy}^4. \end{aligned} \end{aligned}$$
(8)

Solving \(D_{{\phi }} (u_{xy}^2)=0\) we receive \(u_{xy}^2= {f^2} /{4}\) or \( {(f+1)^2}/ {4}\). Now, if:

  1. (i)

    \(f \in [- {1} /{2}, 0)\), and \(\phi _{xx}(c,d)<0\), \(\phi _{yy}(c,d)<0\), and \(D_{{\phi }}(c,d)>0\), follows that \({\phi }(c,d)\) is a local maximum.

  2. (ii)

    \(f \in (-1, - {1} /{2})\), and if: 1). \({u}_{xy}^2 (c,d) \in ( {(f+1)^2}/ {4}, {f^2}/ {4})\), then \(D_{{\phi }}(c,d)<0\). So (cd) is a saddle point; 2). \({u}_{xy}^2 (c,d) \in (0, {(f+1)^2}/ {4})\), then \(\phi _{xx}(c,d)<0\), \(\phi _{yy}(c,d)<0\), and \(D_{{\phi }}(c,d)>0\). Therefore, \(\phi (c,d)\) is a local maximum.

  3. (iii)

    \(f=-1\), that is, \(u_{xx}=u_{yy}=- {1} /{2}\), \(u_{xy}^2(c,d) \in (0, {1}/{4})\), follows that \(D_{{\phi }}(c,d)=4u_{xy}^4-u_{xy}^2=u_{xy}^2(4u_{xy}^2-1)<0\). So (cd) is a saddle point.

  4. (iv)

    \(f \in (-\infty , -1)\), then \(\phi _{xx}>0\), \(\phi _{yy}>0\). And if: 1). \({u}_{xy}^2 \in ( {(f+1)^2} /{4}, {f^2}/ {4})\), then \(D_{{\phi }}(c,d)<0\), so (cd) is a saddle point. 2). \({u}_{xy}^2 \in (0, {(f+1)^2}/ {4})\), then \(\phi _{xx}>0\), \(\phi _{yy}>0\), and \(D_{{\phi }}(c,d)>0\). Therefore, \(\phi (c,d)\) is a local minimum.

Case (b): Assume now that \((a',b') \in \varOmega \) is a local maximum and \(u_{xx}-u_{yy} \ne 0\). Rotate the coordinate system by \(\theta \) to make the mixed derivative 0:

$$\begin{aligned} u_{x'x'} (a',b')<0, u_{y'y'} (a',b') <0, u_{x'y'} (a',b') =0; \end{aligned}$$
(9)

Then one can compute the following second derivatives and \(D_{{\phi }}(a',b')\):

$$\begin{aligned} {\phi }_{x'y'} (a',b')=0; {\phi }_{x'x'} (a',b')=u_{x'x'} (a',b')(1+2u_{x'x'} (a',b')); \end{aligned}$$
(10)
$$\begin{aligned} {\phi }_{y'y'} (a',b')=u_{y'y'} (a',b')(1+2u_{y'y'} (a',b')); \end{aligned}$$
(11)
$$\begin{aligned} \begin{aligned} D_{{\phi }}(a',b')={\phi }_{x'x'} {\phi }_{y'y'} -{\phi }_{x'y'}^2 ={u}_{x'x'} {u}_{y'y'}(1+2f+(4f){u}_{x'x'}-4{u}_{x'x'}^2). \end{aligned} \end{aligned}$$
(12)

We denote \(g({u}_{x'x'})=1+2f+(4f){u}_{x'x'}-4{u}_{x'x'}^2\), and solve \(g({u}_{x'x'})=0\) to receive \({u}_{x'x'}=-\frac{1}{2}\) or \(f+\frac{1}{2}\). Now, if:

  1. (i)

    \(f \in [-{1}/ {2}, 0)\), then \({u}_{x'x'} \in (- {1} /{2}, 0)\) and \({u}_{y'y'} \in (- {1} /{2}, 0)\). One may find \(\phi _{x'x'}(a',b')<0\), \(D_{{\phi }}(a',b')>0\), so \({\phi }(a',b')\) is a local maximum.

  2. (ii)

    \(f \in (-1, - {1}/ {2})\), then \({u}_{x'x'} \in (-1, 0)\) and \({u}_{y'y'} \in (-1, 0)\). One may find if: 1). \({u}_{x'x'} (a',b') \in (- {1}/ {2}, f+ {1}/ {2})\), then \(\phi _{x'x'} (a',b')<0\), \(D_{{\phi }}(a',b')>0\), so \({\phi }(a',b')\) is a local maximum; 2). \({u}_{x'x'} (a',b') \in (-1, - {1}/ {2}) \bigcup (f+{1}/{2}, 0)\), then \(D_{{\phi }}(a',b')<0\), so \((a',b')\) is a saddle point.

  3. (iii)

    \(f=-1\), one may found that \(D_{{\phi }}(a',b')<0\) except \({u}_{x'x'}=- {1} /{2}\), which belongs to the third case in case (a). So \((a',b')\) is a saddle point.

  4. (iv)

    \(f \in (-\infty , -1)\), one may find if: 1). \({u}_{x'x'} (a',b') \in (f+ {1}/ {2}, -{1}/ {2})\), then \(\phi _{x'x'} (a',b')>0\), \(D_{{\phi }}(a',b')>0\), so \({\phi }(a',b')\) is a local minimum; 2). \({u}_{x'x'} (a',b') \in (-\infty , f+{1}/{2}) \bigcup (- {1}/ {2}, 0)\), then \(D_{{\phi }}(a',b')<0\), so \((a',b')\) is a saddle point.

Part I.2. Since u has a saddle point \((c,d) \in \varOmega \), then \(D_u=u_{xx}u_{yy}-u_{xy}^2<0\).

Case (a): Assume \(u_{xx}-u_{yy}=0\). Follows that

$$\begin{aligned} u_{xx} (c,d)u_{yy} (c,d) = {f^2(c,d)}/ {4}<u^2_{xy} (c,d). \end{aligned}$$
(13)
  1. (i)

    If \(f \in (- {1}/ {2}, 0)\), and if: 1). \({u}_{xy}^2 (c,d) \in ( {f^2}/{4}, {(f+1)^2}/ {4})\), then \(D_{{\phi }}(c,d)<0\), so (cd) is a saddle point; 2). \({u}_{xy}^2 (c,d) \in ( {(f+1)^2}/ {4}, \infty )\), then \(\phi _{xx}(c,d)>0\), \(\phi _{yy}(c,d)>0\), and \(D_{{\phi }}(c,d)>0\). Therefore, \(\phi (c,d)\) is a local minimum.

  2. (ii)

    If \(f \in (-1, - {1}/ {2}]\), then \(\phi _{xx}(c,d)>0\), \(\phi _{yy}(c,d)>0\), and \(D_{{\phi }}(c,d)>0\), so \({\phi }(c,d)\) is a local minimum.

  3. (iii)

    If \(f=-1\), that is, \(u_{xx}=u_{yy}=-\frac{1}{2}\), \(u_{xy}^2(c,d) > \frac{1}{4}\), then \(\phi _{xx}=\phi _{yy}=2{u_{xy}}^2>0\). According to Eq. 8, \(D_{{\phi }}(c,d)>0\). So \(\phi (c,d)\) is a local minimum.

  4. (iv)

    If \(f \in (-\infty , -1)\), then \(\phi _{xx}(c,d)>0\), \(\phi _{yy}(c,d)>0\), and \(D_{{\phi }}(c,d)>0\). Therefore, (cd) is a local minimum point.

Case (b): Assume that for \((a',b') \in \varOmega \) \(u_{xx}-u_{yy} \ne 0\). Analogously to part I.1 Case (b), we rotate the coordinate system by \(\theta \) and prove

  1. (i)

    If \(f \in [- {1}/ {2},0)\), and if: 1). \({u}_{x'x'} \in (-\frac{1}{2}, f+\frac{1}{2})\), then \(D_{{\phi }} (a',b')<0\). So \( (a',b')\) is a saddle point; 2). \({u}_{x'x'} (a',b') \in (-\infty , -\frac{1}{2}) \bigcup (- f+\frac{1}{2}, \infty )\), then \(\phi _{x'x'} (a',b')>0\), \(\phi _{y'y'} (a',b')>0\), \(D_{{\phi }} (a',b')>0\), so \({\phi } (a',b')\) is a local minimum.

  2. (ii)

    If \(f \in (-\infty , -\frac{1}{2}) \phi _{x'x'}(a',b')>0, \phi _{y'y'}(a',b')>0\), then \(D_{{\phi }}(a',b') >0\), so \({\phi } (a',b')\) is a local minimum.

Part II. u has saddle points. Hence \(D_u=u_{xx}u_{yy}-u_{xy}^2<0\), that is, \(u_{xy}^2>u_{xx}u_{yy}>0\). Analogously to I.1 Case (b) we rotate by \(\theta \) and determine

$$\begin{aligned} D_{{\phi }}(a',b')={u}_{x'x'}^2 (a',b')(2{u}_{x'x'} (a',b')-1)(2{u}_{x'x'} (a',b')+1). \end{aligned}$$
(14)
  1. (i)

    If \({u}_{x'x'} \in (- {1}/ {2}, 0) \bigcup (0, {1}/{2})\), \(D_{{\phi }}(a',b')<0\), so \((a',b')\) is a saddle point.

  2. (ii)

    If \({u}_{x'x'} (a',b') \in (-\infty , - {1}/ {2}) \bigcup ({1}/{2}, \infty )\), one may find that \(\phi _{xx}(a',b')>0\), \(\phi _{yy}(a',b')>0\), \(D_{{\phi }}(a',b')>0\), so \({\phi }(a',b')\) is a local minimum.

Consider \({u}_{xx}=- {1}/ {2}\) or 1 / 2. Without rotation of the coordinate system, we calculate \(\phi _{xx}>0\), \(\phi _{yy}>0\), \(D_{{\phi }} >0\). Therefore, \({\phi }\) attains a local minimum.

Hence all cases of the theorem are exhausted and proven.    \(\diamond \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, M., Sirakov, N.M. (2018). Poisson Equation Solution and Its Gradient Vector Field to Geometric Features Detection. In: Fagan, D., Martín-Vide, C., O'Neill, M., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2018. Lecture Notes in Computer Science(), vol 11324. Springer, Cham. https://doi.org/10.1007/978-3-030-04070-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04070-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04069-7

  • Online ISBN: 978-3-030-04070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics