Skip to main content

It Is Time to Dissolve Old Dichotomies in Order to Grasp the Whole Picture of Cognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11324))

Abstract

Models of efficient computation aiming for artificial general intelligence routinely draw a wealth of inspiration from the human brain and behavior. This applies to many diverse details and building blocks, and the most notable ones so far are artificial neural networks. As soon as it comes to more general architectural and algorithmic questions difficulties arise as there is a wide variety of models purportedly describing the basis and the working of specific mental processes. Here, it shall be sketched how a novel cognitive architecture under the name of the Ouroboros Model allows the reconciliation of many competing views by offering an overall conception, in which earlier attempts can be traced to specific and limited perspectives focusing on particular features, tasks and contexts. It is claimed that the Ouroboros Model constitutes a novel and promisingly comprehensive approach, which is still waiting exploitation for detailed formalization, modelling and working implementations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stocker, K.: Digital causal cognition. Int. J. Cogn. Linguist. 4(1), 9–34 (2013)

    Google Scholar 

  2. Miller, P.: Itinerancy between attractor states in neural systems. Curr. Opin. Neurobiol. 40, 14–22 (2016). https://doi.org/10.1016/j.conb.2016.05.005

    Article  Google Scholar 

  3. Brewer, W.F., Loschky, L.: Top-Down and Bottom-Up influences on observation: evidence from cognitive psychology and the history of science. In: Cognitive Penetrability of Perception, ed.: Athanassios Raftpoulos, pp. 31–47, Nova Science Publishers, Inc. (2005)

    Google Scholar 

  4. Rauss, K., Pourtois, G.: What is bottom-up and what is top-down in predictive coding? Frontiers Psychol. 4, 276 (2013). https://doi.org/10.3389/fpsyg.2013.00276

  5. Logan, G.D.: Parallel and serial processes. In: Pashler, H., Wixted, J. (eds.) Stevens’ Handbook of Experimental Psychology, vol. 4, 3rd edn. Methodology in Experimental Psychology, pp. 271–300. John Wiley & Sons (2002). https://doi.org/10.1002/0471214426.pas0407

  6. Fischer, R., Plessow, F.: Efficient multitasking: parallel versus serial processing of multiple tasks. Frontiers Psychol. 6 (2015). https://doi.org/10.3389/fpsyg.2015.01366

  7. Damasio, A.: Descartes’ Error: emotion, reason, and the human brain. Putnam 1994. Revised edition, Penguin (2005)

    Google Scholar 

  8. Gosche, T., Bolte, A.: Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia 62, 403–423 (2014)

    Article  Google Scholar 

  9. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus & Giroux (2011)

    Google Scholar 

  10. Horr, N.K., Braun, C., Zander, T., Volz, K.G.: Timing matters! The neural signature of intuitive judgments differs according to the way information is presented. Conscious. Cogn. 38, 71–87 (2015)

    Article  Google Scholar 

  11. Lazarus, R.: On the primacy of cognition. Am. Psychol. 39, 124–129 (1984)

    Article  Google Scholar 

  12. Zajonc, R.B.: On the primacy of affect. Am. Psychol. 39, 117–123 (1984)

    Article  Google Scholar 

  13. Goya-Martinez, M.: The emulation of emotion in artificial intelligence: another step in anthropomorphism. In: Emotion, Technology, and Design. Elsevier Inc. (2016). https://doi.org/10.1016/b978-0-12-801872-9.00008-9

  14. Raffone, A., Srinivasan, N., van Leeuwen, C.: The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Phil. Trans. R. Soc. B 369, 1641–1656 (2014)

    Google Scholar 

  15. Thomsen, K.: The Ouroboros Model in the light of venerable criteria. Neurocomputing 74, 121–128 (2010)

    Article  Google Scholar 

  16. Thomsen, K.: Concept formation in the Ouroboros Model. In: Proceedings of AGI 2010 Third Conference on Artificial General Intelligence (2010)

    Google Scholar 

  17. Hahn, U., Hornikx, J.: A normative framework for argument quality: argumentation schemes with a Bayesian foundation. Synthese 193, 1833–1873 (2016). https://doi.org/10.1007/s11229-015-0815-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Harris, A.J.L., Corner, A., Hahn, U.: James is polite and punctual (and useless): a Bayesian formalization of faint praise. Thinking Reasoning 19, 414–429 (2014). https://doi.org/10.1080/13546783.2013.801367

    Article  Google Scholar 

  19. Thomsen, K.: The Ouroboros model, selected facets. In: Hernández, C., et al. (eds.) From Brains to Systems, pp. 239–250. Springer, New York, Dordrecht, Heidelberg, London (2011) https://doi.org/10.1007/978-1-4614-0164-3_19

  20. Thomsen, K.: The Cerebellum according to the Ouroboros Model, the ‘Interpolator Hypothesis’. J. Commun. Comput. 11, 239–254 (2014)

    Google Scholar 

  21. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Article  Google Scholar 

  22. Thomsen, K.: ONE function for the anterior cingulate cortex and general AI: consistency curation. Med. Res. Archives 6 (2018). https://doi.org/10.18103/mra.v6i1.1669

  23. Thomsen, K.: The Ouroboros Model embraces its sensory-motoric foundations. Studies in Logic, Grammar and Rhetoric 41, 105–125 (2015)

    Article  Google Scholar 

  24. Bowers, K.S., Regehr, G., Balthazard, C., Parker, K.: Intuition in the context of discovery. Cogn. Psychol. 22, 72–110 (1990)

    Article  Google Scholar 

  25. Thomsen, K.: Consciousness for the Ouroboros model. J. Mach. Conscious. 3, 163–175 (2011)

    Article  Google Scholar 

  26. Baars, B.J.: A Cognitive Theory of Consciousness. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  27. Dehaene, S., Naccache, L.: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001)

    Google Scholar 

  28. Van Gulick, R.: Higher-order global states - an alternative higher-order view. In: Gennaro, R. (ed.) Higher-Order Theories of Consciousness. John Benjamins, Amsterdam (2004)

    Google Scholar 

  29. Treisman, A., Gelade, G.: A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)

    Article  Google Scholar 

  30. Krauzlis, R.J., Billimunta, A., Arcizet, F., Wang, L.: Attention as an effect not a cause. Trends Cognit. Sci. 18, 457–464 (2014)

    Article  Google Scholar 

  31. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind, toward a common computational framework across artificial intelligence, cognitive science and robotics. Ai Mag. 38 (2017). https://doi.org/10.1609/aimag.v38i4.2744

  32. Goertzel, B.: OpenCogPrime: a cognitive synergy based architecture for artificial general intelligence. In: International Conference on Cognitive Informatics, Hong Kong (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knud Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomsen, K. (2018). It Is Time to Dissolve Old Dichotomies in Order to Grasp the Whole Picture of Cognition. In: Fagan, D., Martín-Vide, C., O'Neill, M., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2018. Lecture Notes in Computer Science(), vol 11324. Springer, Cham. https://doi.org/10.1007/978-3-030-04070-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04070-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04069-7

  • Online ISBN: 978-3-030-04070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics