Skip to main content

Fuel Efficient Truck Platooning with Time Restrictions and Multiple Speeds Solved by a Particle Swarm Optimisation

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2018)

Abstract

In this paper, the problem of driving vehicles behind each other in close proximity as a file to reduce the total fuel consumption, called fuel-efficient platooning (FEP), is investigated. Some real-life attitudes like time restrictions and multiple allowable speeds for vehicles are taken into account. Linear mathematical formulations are presented for the FEP problem, which are coded in GAMS and solved by the GUROBI solver. Since the problem has a high computational complexity, an alternative evolutionary solution approach with Particle Swarm Optimisation (PSO) is proposed. An appropriate application procedure is given, which converts the continuous solution space of PSO into the routing, time scheduling and speed adjustment. The performance of our PSO is tested with some generated samples including up to 1000 vehicles on the graph of Chicago road network. The results verify the goodness of our PSO in terms of solution quality and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schittler, M.: State-of-the-art and emerging truck engine technologies for optimized performance, emissions and life cycle costs. In: 9th Diesel Emissions Reduction Conference, August 2003, Rhode Island, USA, August 2003

    Google Scholar 

  2. Schroten, A., Warringa, G., Bles, M.: Marginal abatement cost curves for heavy duty vehicles. In: Background report. CE Delft, Delft, Netherlands, July 2012

    Google Scholar 

  3. Bonnet, C., Fritz, H.: Fuel consumption reduction in a platoon: experimental results with two electronically coupled trucks at close spacing. In: Intelligent Vehicle Technology - SP-1558

    Google Scholar 

  4. Kianfar, R., Falcone, P., Fredriksson, J.: A control matching model predictive control approach to string stable vehicle platooning. Control. Eng. Pract. 45, 163–173 (2015)

    Article  Google Scholar 

  5. Alam, A., Mårtensson, J., Johansson, K.H.: Control engineering practice experimental evaluation of decentralized cooperative cruise control for heavy-duty vehicle platooning. Control. Eng. Pract. 38, 11–25 (2015)

    Article  Google Scholar 

  6. Gao, S., Lim, A., Bevly, D.: An empirical study of DSRC V2V performance in truck platooning scenarios. Digit. Commun. Netw. 2(4), 233–244 (2016)

    Article  Google Scholar 

  7. Bergenhem, C., Hedin, E., Skarin, D.: Vehicle-to-vehicle communication for a platooning system. Procedia Soc. Behav. Sci. 48, 1222–1233 (2012)

    Article  Google Scholar 

  8. Liang, K.Y., Deng, Q., Mårtensson, J., Ma, X., Johansson, K.H.: The influence of traffic on heavy-duty vehicle platoon formation. In: Intelligent Vehicles Symposium (IV), pp. 150–155. IEEE, June 2015

    Google Scholar 

  9. van de Hoef, S., Johansson, K.H., Dimarogonas, D.V.: Computing feasible vehicle platooning opportunities for transport assignments. IFAC-PapersOnLine 49(3), 43–48 (2016)

    Article  MathSciNet  Google Scholar 

  10. Heikoop, D.D., de Winter, J.C.F., van Arem, B., Stanton, N.A.: Effects of platooning on signal-detection performance, workload, and stress: a driving simulator study. Appl. Ergon. 60, 116–127 (2017)

    Article  Google Scholar 

  11. Li, B.: Stochastic modeling for vehicle platoons (II): statistical characteristics. Transp. Res. Part B Methodol. 95, 378–393 (2017)

    Article  Google Scholar 

  12. Dafflon, B., Gechter, F., Gruer, P., Koukam, A.: Vehicle platoon and obstacle avoidance: a reactive agent approach. IET Intell. Transp. Syst. 7(3), 257–264 (2013)

    Article  Google Scholar 

  13. El Zaher, M., Gechter, F., Hajjar, M., Gruer, P.: An interaction model for a local approach to vehicle platoons. Int. J. Veh. Auton. Syst. 13, 91–113 (2016)

    Google Scholar 

  14. Yu, K., Liang, Q., Yang, J., Guo, Y.: Model predictive control for hybrid electric vehicle platooning using route information. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 230(9), 1273–1285 (2016)

    Article  Google Scholar 

  15. Yu, K., et al.: Model predictive control for hybrid electric vehicle platooning using slope information. IEEE Trans. Intell. Transp. Syst. 17(7), 1894–1909 (2016)

    Article  Google Scholar 

  16. Tadakuma, K., Doi, T., Shida, M., Maeda, K.: Prediction formula of aerodynamic drag reduction in multiple-vehicle platooning based on wake analysis and on-road experiments. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 645–656 (2016)

    Google Scholar 

  17. van de Hoef, S., Johansson, K.H., Dimarogonas, D.V.: Coordinating truck platooning by clustering pairwise fuel-optimal plans. In: ITSC 2015, October, pp. 408–415 (2015)

    Google Scholar 

  18. Liang, K.Y.: Coordination and routing for fuel-efficient heavy-duty vehicle platoon formation. Licentiate thesis. KTH Royal Institute of Technology, Sweden (2014)

    Google Scholar 

  19. Larsson, E., Sennton, G., Larson, J.: The vehicle platooning problem: computational complexity and heuristics. Transp. Res. Part C 60, 258–277 (2015)

    Article  Google Scholar 

  20. Kammer, C.: Coordinated heavy truck platoon routing using global and locally distributed approaches. Master thesis. KTH Royal Institute of Technology, Sweden (2013)

    Google Scholar 

  21. Larson, J., Munson, T., Sokolov, V.: Coordinated platoon routing in a metropolitan network, pp. 73–82 (2016)

    Google Scholar 

  22. Nourmohammadzadeh, A., Hartmann, S.: The fuel-efficient platooning of heavy duty vehicles by mathematical programming and genetic algorithm. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 46–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_4

    Chapter  Google Scholar 

  23. Zhang, W., Sundberg, M., Karlström, A.: Platoon coordination with time windows: an operational perspective. Transp. Res. Procedia 27, 357–364 (2017). 20th EURO Working Group on Transportation Meeting, EWGT 2017, 4–6 September 2017. Budapest, Hungary (2017)

    Google Scholar 

  24. Boysen, N., Briskorn, D., Schwerdfeger, S.: The identical-path truck platooning problem. Transp. Res. Part B Methodol. 109, 26–39 (2018)

    Article  Google Scholar 

  25. Luo, F., Larson, J., Munson, T.: Coordinated platooning with multiple speeds. Transp. Res. Part C Emerg. Technol. 90, 213–225 (2018)

    Article  Google Scholar 

  26. GAMS Development Corporation. General algebraic modeling system (GAMS) release 24.2.1 (2013)

    Google Scholar 

  27. GUROBI 8 in GAMS. https://www.gams.com/latest/docs/S_GUROBI.html

  28. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995

    Google Scholar 

  29. Box, G.E.P., Draper, N.R.: Response Surfaces, Mixtures, and Ridge Analyses, 2nd edn. Wiley-Interscience, Hoboken(2007)

    Google Scholar 

  30. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abtin Nourmohammadzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nourmohammadzadeh, A., Hartmann, S. (2018). Fuel Efficient Truck Platooning with Time Restrictions and Multiple Speeds Solved by a Particle Swarm Optimisation. In: Fagan, D., Martín-Vide, C., O'Neill, M., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2018. Lecture Notes in Computer Science(), vol 11324. Springer, Cham. https://doi.org/10.1007/978-3-030-04070-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04070-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04069-7

  • Online ISBN: 978-3-030-04070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics