Skip to main content

Monitoring Acute Lymphoblastic Leukemia Therapy with Stacked Denoising Autoencoders

  • Conference paper
  • First Online:
Computer Aided Intervention and Diagnostics in Clinical and Medical Images

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 31))

Abstract

For acute lymphoblastic leukemia treatment monitoring, the ratio of cancerous blood cells, called Minimal Residual Disease (MRD), is in practice assessed manually by experts. Using flow cytometry, single cells are classified as cancerous or healthy, based on a number of measured parameters. This task allows application of machine learning techniques, such as Stacked Denoising Autoencoders (DSAE). Seven different models’ performance in assessing MRD was evaluated. Higher model complexity does not guarantee better performance. For all models, a high number of false positives biases the predicted MRD value. Therefore, cost-sensitive learning is proposed as a way of improving classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the conducted randomized clinical trial AIEOP-BFM 2009, approximately 2000 ALL patients between age 1–18 years in 20 countries in and outside Europe were observed per year (see http://www.bfm-international.org/trials.php [assessed 2018-04-14]).

  2. 2.

    See [19, 8.5.1] for a definition of the performance metrics.

References

  1. Theunissen P, Mejstrikova E et al (2017) Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 129(3):347–357

    Article  Google Scholar 

  2. Brüggemann M, Schrauder A, Raff T et al (2008) Standardized MRD quantification in European ALL trials: proceedings of the second international symposium on MRD assessment in Kiel, Germany, 18–20 Sept 2008. (2010) Leuk Off J Leuk Soc Am Leuk Res Fund 24(3):521–535

    Article  Google Scholar 

  3. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159

    Article  Google Scholar 

  4. Guo Z, Li X, Xiang et al (2017) Medical image segmentation based on multi-modal convolutional neural network: study on image fusion schemes. arXiv:1711.00049

  5. Moeskops P, Viergever M, Mendrik A et al (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imag 35(5):1252–1261

    Article  Google Scholar 

  6. He K, Zhang X, Ren S, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: ECCV. Springer

    Google Scholar 

  7. Zhang Y, Sohn K, Villegas R, Pan G, Lee H (2015) Improving object detection with deep convolutional networks via bayesian optimization and structured prediction. In: CVPR. IEEE (2015)

    Google Scholar 

  8. Schlegl T, Waldstein S, Vogl WD et al (2015) Predicting semantic descriptions from medical images with convolutional neural networks. In: Ourselin S, Alexander DC, Westin CF, Cardoso M (eds) IPMI. Springer International Publishing, vol 9123. pp 437–448 (2015)

    Google Scholar 

  9. Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  10. Bengio Y (2009) Learning Deep Architectures for AI. Mach Learn 2(1):1–127

    Article  MathSciNet  Google Scholar 

  11. Licandro R, Rota P, Reiter M, Kampel M (2016) Flow Cytometry based automatic MRD assessment in Acute Lymphoblastic Leukaemia: Longitudinal evaluation of time-specific cell population models. In: 14th international workshop on content-based multimedia indexing (CBMI)

    Google Scholar 

  12. Ng A (2011) Sparse autoencoder. CS294A Lect Notes 72(2011):1–19

    Google Scholar 

  13. Bengio Y, Lamblin P, Popovici D et al (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160

    Google Scholar 

  14. Bishop C (2006) Pattern recognition and machine learning. Information science and statistics, Springer, New York

    Google Scholar 

  15. Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Machi Learn Res 11(Dec):3371–3408

    Google Scholar 

  16. Bergstra J (2018) Hyperopt—Distributed asynchronous hyperparameter optimization in python. http://hyperopt.github.io/hyperopt/. Accessed 5 Mar 2018

  17. Bergstra J, Yamins D, Cox D Making a science of model search. arXiv:1209.5111

  18. Bergstra J, Bardenet R, Bengio Y, Kgl B (2011) Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems pp. 2546–2554

    Google Scholar 

  19. Han J, Kamber M (2011) Data mining: concepts and techniques, 3rd edn. Elsevier, Burlington, MA

    Google Scholar 

  20. Karsa M, Dalla Pozza L, Venn N et al (2013) Improving the identification of high risk precursor B acute lymphoblastic leukemia patients with earlier quantification of minimal residual disease. PLoS ONE 8(10):e76455

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission FP7-PEOPLE-2013-IAPP 610872 and by ZIT Life Sciences 2014 (1207843). We want to thank Michael Dworzak and Angela Schumich at the Children Cancer Research Center in Vienna for annotating and providing the FCM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxane Licandro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scheithe, J., Licandro, R., Rota, P., Reiter, M., Diem, M., Kampel, M. (2019). Monitoring Acute Lymphoblastic Leukemia Therapy with Stacked Denoising Autoencoders. In: Peter, J., Fernandes, S., Eduardo Thomaz, C., Viriri, S. (eds) Computer Aided Intervention and Diagnostics in Clinical and Medical Images. Lecture Notes in Computational Vision and Biomechanics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-04061-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04061-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04060-4

  • Online ISBN: 978-3-030-04061-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics