Skip to main content

Analysis of Action Oriented Effects on Perceptual Process of Object Recognition Using Physiological Responses

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11278))

Included in the following conference series:

Abstract

Action on any objects provides perceptual information about the environment. There is substantial evidence that human visual system responds to action possibilities in an image as perceiving any one’s action stimulates human motor system. However very limited studies have been done to analyze the effect of object affordance during action perception and execution. To study the effect of object affordance on human perception, in this paper we have analyzed the human brain signals using EEG based oscillatory activity of brain. EEG responses corresponding to images of objects shown with correct, incorrect and without grips are examined. Exploration of different gripping effects has been done by extracting Alpha and Beta frequency bands using Discrete Wavelet Transform based band extraction method, then baseline normalized power of Alpha and Beta frequency bands at 24 positions of motor area of left and right side of brain are examined. The result shows that twelve pooled electrodes at central and central parietal region provides a clear discrimination among the three gripping cases in terms of calculated power. The presented research explores new applicabilities of object affordance to develop a variety of Brain Computer Interface (BCI) based devices and to improve motor imagery ability among motor disorder related patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 05 January 2019

    The original version of the chapter “Analysis of Action Oriented Effects on Perceptual Process of Object Recognition Using Physiological Responses”, starting on p. 46 has been revised. The affiliations were mismatched to the author names in the XML version. The original article was corrected.

References

  1. Noe, A.: Action in Perception. A Bradford Book (2006)

    Google Scholar 

  2. Gibson, J.J.: The Theory of Affordances-The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)

    Google Scholar 

  3. Norman, D.A.: The Psychology of Everyday Things. Basic Books, New York (1988)

    Google Scholar 

  4. Hailperin-Lausch, R.: A proposed EEG study: the role of object affordance during action observation. IU J. Undergrad. Res. 3(1), 44–47 (2017)

    Google Scholar 

  5. Hassanien, A.E., Azar, A.T. (eds.): Brain-Computer Interfaces: Current Trends and Applications. ISRL, vol. 74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10978-7

    Book  MATH  Google Scholar 

  6. Kim, D.-E., Yu, J.-H., Sim, K.-B.: EEG feature classification based on grip strength for BCI applications. Int. J. Fuzzy Log. Intell. Syst. 15(4), 277–282 (2015)

    Article  Google Scholar 

  7. Chaudhari, R., Galiyawala, H.J.: A review on motor imagery signal classification for BCI. Signal Process. Int. J. (SPIJ) 11(2), 16 (2017)

    Google Scholar 

  8. Amin, H.U., Mumtaz, W., Subhani, A.R., Saad, M.N.M., Malik, A.S.: Classification of EEG signals based on pattern recognition approach. Front. Comput. Neurosci. 11 (2017). https://doi.org/10.3389/fncom.2017.00103

  9. Choi, S.H., Lee, M., Wang, Y., Hong, B.: Estimation of optimal location of EEG reference electrode for motor imagery based BCI using fMRI. In: International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, pp. 1193–1196. IEEE (2006)

    Google Scholar 

  10. Schuch, S., Bayliss, A.P., Klein, C., Tipper, S.P.: Attention modulates motor system activation during action observation: evidence for inhibitory rebound. Exp. Brain Res. 205(2), 235–249 (2010). https://doi.org/10.1007/s00221-010-2358-4

    Article  Google Scholar 

  11. Oberman, L.M., Pineda, J.A., Ramachandran, V.S.: The human mirror neuron system: a link between action observation and social skills. Soc. Cogn. Affect. Neurosci. 2(1), 62–66 (2007). https://doi.org/10.1093/scan/nsl022

    Article  Google Scholar 

  12. Kumar, S., Yoon, E.Y., Humphreys, G.W.: Perceptual and motor-based responses to hand actions on objects: evidence from ERPs. Exp. Brain Res. 220(2), 153–164 (2012)

    Article  Google Scholar 

  13. Kumar, S., Riddoch, M.J., Humphreys, G.: Mu rhythm desynchronization reveals motoric influences of hand action on object recognition. Front. Hum. Neurosci. 7(66) (2013). https://doi.org/10.3389/fnhum.2013.00066

  14. Li, L., Wang, J., Xu, G., Li, M., Xie, J.: The study of object-oriented motor imagery based on EEG suppression. PLoS ONE 10(12) (2015). https://doi.org/10.1371/journal.pone.0144256

    Article  Google Scholar 

  15. Sreeja, S.R., Rabha, J., Samanta, D., Mitra, P., Sarma, M.: Classification of motor imagery based EEG signals using sparsity approach. In: Horain, P., Achard, C., Mallem, M. (eds.) IHCI 2017. LNCS, vol. 10688, pp. 47–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72038-8_5

    Chapter  Google Scholar 

  16. Roy, R., Sikdar, D., Mahadevappa, M., Kumar, C.: EEG based motor imagery study of time domain features for classification of power and precision hand grasps. In: 8th International IEEE EMBS Conference on Neural Engineering Shanghai, China, 25–28 May 2017

    Google Scholar 

  17. Sivakami, A., Shenbaga Devi, S.: Analysis of EEG for motor imagery based classification of hand activities. Int. J. Biomed. Eng. Sci. (IJBES) 2(3), 11–22 (2015)

    Google Scholar 

  18. Lange, G., Low, C.Y., Johar, K., Hanapiah, F.A., Kamaruzaman, F.: Classification of electroencephalogram data from hand grasp and release movements for BCI controlled prosthesis. Procedia Technol. 26, 374–381 (2016)

    Article  Google Scholar 

  19. Mohammad, H.A., Samaha, A., AlKamha, K.: Automated classification of L/R hand movement EEG signals using advanced feature extraction and machine learning. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4(6), 207–212 (2013)

    Google Scholar 

  20. Holler, Y., et al.: Comparison of EEG-features and classification methods for motor imagery in patients with disorders of consciousness. PLoS ONE 8(11) (2013). https://doi.org/10.1371/journal.pone.0080479

    Article  Google Scholar 

  21. Gupta, S.S., Agarwal, S.: Classification and analysis of EEG signals for imagined motor movements. In: IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI), pp. 1–7. IEEE (2015)

    Google Scholar 

  22. Matsumoto, J., Fujiwara, T., Takahashi, O., Liu, M., Kimura, A., Ushiba, J.: Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J. NeuroEngineering Rehabil. 7(27) (2010). https://doi.org/10.1186/1743-0003-7-27

    Article  Google Scholar 

  23. Batres-Mendoza, P., et al.: Improving EEG-based motor imagery classification for real-time applications using the QSA method. Comput. Intell. Neurosci. (2017). https://doi.org/10.1155/2017/9817305

    Article  Google Scholar 

  24. Hari Krishna, D., Pasha, I.A., Savithri, T.S.: Classification of EEG motor imagery multi class signals based on cross correlation. Procedia Comput. Sci. 85, 490–495 (2016). https://doi.org/10.1016/j.procs.2016.05.198

    Article  Google Scholar 

  25. Vivas, E.L.A., García-González, A., Figueroa, I., Fuentes, R.Q.: Discrete wavelet transform and ANFIS classifier for brain-machine interface based on EEG. In: 6th International Conference on Human System Interactions (HSI), Sopot, Poland, pp. 137–144. IEEE (2013)

    Google Scholar 

  26. Shedeed, H.A., Issa, M.F.: Brain-EEG signal classification based on data normalization for controlling a robotic arm. Int. J. Tomogr. Simul. 29, 72–85 (2016)

    Google Scholar 

  27. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084–1093 (2007). https://doi.org/10.1016/j.eswa.2006.02.005

    Article  Google Scholar 

  28. Article on Wavelet db8. http://wavelets.pybytes.com/wavelet/db8/. Accessed 20 Mar 2018

  29. Cohen, M.X.: Chapter 18-Analyzing neural time series data: theory and practice. MIT Press (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanu Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S., Mishra, A., Kumar, S., Ranjan, P., Ujlayan, A. (2018). Analysis of Action Oriented Effects on Perceptual Process of Object Recognition Using Physiological Responses. In: Tiwary, U. (eds) Intelligent Human Computer Interaction. IHCI 2018. Lecture Notes in Computer Science(), vol 11278. Springer, Cham. https://doi.org/10.1007/978-3-030-04021-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04021-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04020-8

  • Online ISBN: 978-3-030-04021-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics