Skip to main content

Recovery of Thermodynamic Hydrate Inhibitors with Supersonic Separators in Offshore Processing of Natural Gas: The Cases of Methanol, Ethanol, and Monoethylene Glycol

  • Chapter
  • First Online:
Offshore Processing of CO2-Rich Natural Gas with Supersonic Separator

Abstract

The high versatility of supersonic separators for natural gas (NG) processing is explored in this chapter to include the recovery of thermodynamic hydrate inhibitors (THIs), such as methanol, ethanol, and monoethylene glycol (MEG). THIs are normally injected upstream in the raw natural gas feed to prevent solid gas hydrate issues during transportation to the processing platform. Thus, normally, a small fraction of all injected THIs is routinely lost in the natural gas product after the primary three-phase high-pressure separator (HPS) at the platform. Therefore, several processing alternatives are analyzed to recover such THI losses using supersonic separators (SS). It is shown that SS can accomplish THI recovery from raw NG simultaneously removing water for water dew-point adjustment (WDPA) and removing C3+ hydrocarbons for hydrocarbon dew-point adjustment (HCDPA) from the raw NG, reducing costs of THI losses and costs of gas processing. This new process—denominated SS-THI-Recovery—is disclosed in this chapter and analyzed in terms of technical feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alharooni, K., Barifcani, A., Pack, D., Gubner, R., Ghodkay, V.: Inhibition effects of thermally degraded MEG on hydrate formation for gas systems. J. Petrol. Sci. Eng. 135(1), 608–617 (2015). https://doi.org/10.1016/j.petrol.2015.10.001

    Article  Google Scholar 

  • Dong, L., ZhenYu, C., XingPeng, G.: The effect of acetic acid and acetate on CO2 corrosion of carbon steel. Anti-corros. Methods Mater. 55(3), 130–134 (2008). https://doi.org/10.1108/00035590810870437

    Article  Google Scholar 

  • Feygin, V., Imayev, S., Alfyorov, V., Bagirov, L., Dmitriev, L., Lacey, J.: Supersonic gas technologies. In: 23rd World Gas Conference. International Gas Union, Amsterdam, The Netherlands (2006)

    Google Scholar 

  • Folas, G.K., Gabrielsen, J., Michelsen, M.L., Stenby, E.H., Kontogeorgis, G.M.: Application of the cubic-plus-association (CPA) equation of state to cross-associating systems. Ind. Eng. Chem. Res. 44, 3823–3833 (2005)

    Article  Google Scholar 

  • Gate, Inc.. Hydrates: prediction, mitigation and remediation techniques. GAT2004-GKP-2012.02, February, 2012. Pg. 1. Available at: http://www.gateinc.com/wp-content/uploads/2012/02/GAT2004-GKP-2012.02-Hydrates-Prediction-Mitigation-Methods-Remediation-Techniques-.pdf. Accessed in: 19 Oct 2014

  • Gupta, G., Singh, S.K.: Hydrate inhibition—optimization in deep water gas field. In: SPE Oil and Gas India Conference and Exhibition, 28–30 March, 2012, Mumbai, India. SPE 153504. http://dx.doi.org/10.2118/153504-MS

  • Haghighi, H, Chapoy, A, Burgess, R, Tohidi, B.: Experimental and thermodynamic modelling of systems containing water and ethylene glycol: application to flow assurance and gas processing. Fluid Phase Equilibria 276(1), 24–30 (2009). Elsevier. http://dx.doi.org/10.1016/j.fluid.2008.10.006

    Article  Google Scholar 

  • Hould, N., Elanany, M.S., Aleisa, R.M., Al-Majnouni, K.A., Al-Malki, A., Abba, I.: Evaluating polymeric inhibitors of ethane clathrate hydrates. J. Nat. Gas Sci. Eng. 24, 543–549 (2015). https://doi.org/10.1016/j.jngse.2015.03.041

    Article  Google Scholar 

  • Hydro the ormen lange—langeled project. The scottish oil club. Edinburgh, October 5th, 2006. Available at: http://www.scottishoilclub.org.uk/lib/Presentation_061005_Lindholt_ScottishOilClub.pdf. Accessed 21 Aug 2018

  • Ikeh, L., Enyi, G.C., Nasr, G.G.: Inhibition performance of mild steel corrosion in the presence of CO2, HAc and MEG. (2016) http://doi.org/10.2118/179942-MS

  • Kanu, A., Al-Hajiri, N., Messaoud, Y., Ono, N. Mitigating hydrates in subsea oil flowlines: consider production flow monitoring and control. international petroleum technology conference, 19 January, 2014, Doha, Qatar. IPTC 17492. http://dx.doi.org/10.2523/IPTC-17492-MS

  • Karakatsani, E.K., Kontogeorgis, G.M.: Thermodynamic modeling of natural gas systems containing water. Ind. Eng. Chem. Res. 52, 3499–3513 (2013)

    Article  Google Scholar 

  • Nazeri, M., Tohidi, B., Chapoy, A.: An evaluation of risk of hydrate formation at the top of a pipeline. In: SPE Asia pacific oil and gas conference and exhibition, 22–24 Oct, 2012, Perth, Australia. SPE 160404. http://dx.doi.org/10.2118/160404-MS

  • Nazzer, C.A., Keogh, J.: Advances in glycol reclamation technology. In: Offshore Technology Conference, 1–4 May, 2006, Houston, USA. OTC 18010. http://dx.doi.org/10.4043/18010-MS

  • Pickering, P.F., Edmonds, B., Moorwood, R.A.S., Szczepanski, R., Watson, M.J.: Evaluating new chemicals and alternatives for mitigating hydrates in oil and gas production. (2001) Available at http://feesa.net/pdf/Discussion%20Papers/010918%20%20Evaluating%20Hydrate%20Inhibitors%20-%20Rev%20A.pdf. Accessed 06 Jun 2012

  • Psarrou, M.N., Jøsang, L.O., Sandengen, K., Østvold, T.: Carbon dioxide solubility and monoethylene glycol (MEG) degradation at MEG reclaiming/regeneration conditions. J. Chem. Eng. Data. 56 (12), 4720–4724 (2011). https://doi.org/10.1021/je200709h

    Article  Google Scholar 

  • Sloan, E.D., Koh, C.A. Clathrate hydrates of natural gases, 3rd edn, 2008, CRC Press, Taylor & Francis Group

    Google Scholar 

  • Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Exergy analysis of monoethylene glycol recovery processes for hydrate inhibition in offshore natural gas fields. J. Nat. Gas Sci. Eng. 35, 798–813 (2016). https://doi.org/10.1016/j.jngse.2016.09.017

    Article  Google Scholar 

  • Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Processo para recuperar inibidores termodinâmicos de hidratos de gás de cargas de gás natural utilizando separador supersônico simultaneamente ajustando ponto de orvalho de hidrocarbonetos e ponto de orvalho de água do gás final Brazilian Patent Application No. BR 10 2017 015092 5. Filed in July 13, 2017 (2017)

    Google Scholar 

  • Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing. J. Nat. Gas Sci. Eng. 52, 166–186 (2018). https://doi.org/10.1016/j.jngse.2018.01.038

    Article  Google Scholar 

  • Tzirakis, F., Karakatsani, E., Kontogeorgis, G.M.: Evaluation of the cubic-plus-association equation of state for ternary, quaternary, and multicomponent systems in the presence of monoethylene glycol. Ind. Eng. Chem. Res. 55(43), 11371–11382 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandre Mendonça Teixeira or José Luiz de Medeiros .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teixeira, A.M., Arinelli, L., de Medeiros, J.L., Araújo, O. (2019). Recovery of Thermodynamic Hydrate Inhibitors with Supersonic Separators in Offshore Processing of Natural Gas: The Cases of Methanol, Ethanol, and Monoethylene Glycol. In: Offshore Processing of CO2-Rich Natural Gas with Supersonic Separator. Springer, Cham. https://doi.org/10.1007/978-3-030-04006-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04006-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04005-5

  • Online ISBN: 978-3-030-04006-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics