Skip to main content

Heat Shock Protein 90 Inhibitors in Lung Cancer Therapy

  • Chapter
  • First Online:
Heat Shock Proteins in Signaling Pathways

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

Heat shock protein 90 (HSP90) plays crucial roles in intracellular quality control mechanisms leading to cytoprotection against variety of stressors including hypoxia, oxidative and thermal and oncogenic stress. The chaperoning activity of the evolutionary conserved and ubiquitously expressed HSP90 is adenosine triphosphate (ATP)–dependent and is essential for the folding, maturation, stabilization, activation or proteolytic degradation of its diverse array of client proteins, many of which are products of driver oncogenes in multiple cancers. Hence, tumorigenesis regulation by HSP90 chaperonage function has been the subject of extensive investigation for decades. Targeted HSP90 inhibition has shown promise and may provide an effective and alternate therapeutic approach to treat patients with lung cancer, especially non-small cell lung cancer (NSCLC) with specific mutational background or that have been characterized to show acquired resistance to other drugs targeting different signaling proteins. Although development of HSP90 inhibitors has spanned decades, both preclinically and clinically, the promise is far from being reached. In this chapter, we discuss the potential of HSP90 inhibition, and the preclinical and clinical development and future of important HSP90 small molecule inhibitors that have been or will be critical for lung cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

adenocarcinoma

ADP:

adenosine diphosphate

ATP:

adenosine triphosphate

CTD:

C-terminal domain

EGFR:

epidermal growth factor receptor

ER:

endoplasmic reticulum

FDA:

US Food Administration

GM:

geldanamycin

HSF:

heat shock factor

HSP90:

heat shock protein 90

HSP :

heat shock protein gene

MAPK:

mitogen-activated protein kinase

MD:

middle domain

NGS:

next generation sequencing

NSCLC:

non-small cell lung cancer

NTD:

N-terminal domain

ORR:

objective response rate

OS:

overall survival

PFS:

progression free survival

RD:

radicicol

ROS:

reactive oxygen species

SCC:

squamous cell carcinoma

TKI:

tyrosine kinase inhibitor

TRP:

tetratricopeptide repeat

References

  • Acquaviva J, Smith DL, Sang J et al (2012) Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol Cancer Ther 11:2633–2643

    Article  CAS  PubMed  Google Scholar 

  • Agatsuma T, Ogawa H, Akasaka K et al (2002) Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorg Med Chem 10:3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Arlander SJ, Eapen AK, Vroman BT et al (2003) Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278:52572–52577

    Article  CAS  PubMed  Google Scholar 

  • Bali P, Pranpat M, Bradner J et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  CAS  PubMed  Google Scholar 

  • Bansal H, Bansal S, Rao M et al (2010) Heat shock protein 90 regulates the expression of Wilms tumor 1 protein in myeloid leukemias. Blood 116:4591–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bepperling A, Alte F, Kriehuber T et al (2012) Alternative bacterial two-component small heat shock protein systems. Proc Natl Acad Sci U S A 109:20407–20412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB et al (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brough PA, Aherne W, Barril X et al (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51:196–218

    Article  CAS  PubMed  Google Scholar 

  • Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  • Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle (Georgetown, Tex) 3:1530–1536

    Article  CAS  Google Scholar 

  • Bussenius J, Blazey CM, Aay N et al (2012) Discovery of XL888: a novel tropane-derived small molecule inhibitor of HSP90. Bioorg Med Chem Lett 22:5396–5404

    Article  CAS  PubMed  Google Scholar 

  • Camidge DR, Bang YJ, Kwak EL et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camidge D, Ou S, Shapiro G et al (2014) Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). J Clin Oncol Off J Am Soc Clin Oncol 32:8001

    Article  Google Scholar 

  • Cancer Genome Atlas Research, N (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research, N (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550

    Article  CAS  Google Scholar 

  • Chandarlapaty S, Sawai A, Ye Q et al (2008) SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin Cancer Res: Off J Am Assoc Cancer Res 14:240–248

    Article  CAS  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:1978

    Article  PubMed Central  CAS  Google Scholar 

  • Chatterjee S, Bhattacharya S, Socinski MA et al (2016) HSP90 inhibitors in lung cancer: promise still unfulfilled. Clin Adv Hematol Oncol: H&O 14:346–356

    Google Scholar 

  • Chatterjee S, Huang EH, Christie I et al (2017a) Reactivation of the p90RSK-CDC25C pathway leads to bypass of the ganetespib-induced G2-M arrest and mediates acquired resistance to ganetespib in KRAS-mutant NSCLC. Mol Cancer Ther 16:1658–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Huang EH, Christie I et al (2017b) Acquired resistance to the Hsp90 inhibitor, ganetespib, in KRAS-mutant NSCLC is mediated via reactivation of the ERK-p90RSK-mTOR signaling network. Mol Cancer Ther 16:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Piel WH, Gui L et al (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Sasaki T, Tan X et al (2010) Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 70:9827–9836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Cheng K, Walton Z et al (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiosis G, Timaul MN, Lucas B et al (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289–299

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Lucas B, Shtil A et al (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10:3555–3564

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Vilenchik M, Kim J et al (2004) Hsp90: the vulnerable chaperone. Drug Discov Today 9:881–888

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Kim SY, So KS et al (2015) AUY922 effectively overcomes MET- and AXL-mediated resistance to EGFR-TKI in lung cancer cells. PLoS One 10:e0119832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox AD, Der CJ (2002) Ras family signaling: therapeutic targeting. Cancer Biol Ther 1:599–606

    Article  CAS  PubMed  Google Scholar 

  • Davidson MR, Gazdar AF, Clarke BE (2013) The pivotal role of pathology in the management of lung cancer. J Thorac Dis 5(Suppl 5):S463–S478

    PubMed  PubMed Central  Google Scholar 

  • Davies KD, Le AT, Theodoro MF et al (2012) Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 18:4570–4579

    Article  CAS  Google Scholar 

  • De Raedt T, Walton Z, Yecies JL et al (2011) Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 20:400–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eccles SA, Massey A, Raynaud FI et al (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68:2850–2860

    Article  CAS  PubMed  Google Scholar 

  • Echeverria PC, Figueras MJ, Vogler M et al (2010) The Hsp90 co-chaperone p23 of toxoplasma gondii: identification, functional analysis and dynamic interactome determination. Mol Biochem Parasitol 172:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverria PC, Bernthaler A, Dupuis P et al (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA, Chen L, Tan X et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Frampton GM, Ali SM, Rosenzweig M et al (2015) Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 5:850–859

    Article  CAS  PubMed  Google Scholar 

  • Fuller KJ, Issels RD, Slosman DO et al (1994) Cancer and the heat shock response. Eur J Cancer (Oxford, England: 1990) 30a:1884–1891

    Article  CAS  Google Scholar 

  • Gallegos Ruiz MI, Floor K, Roepman P et al (2008) Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One 3:e0001722

    Article  PubMed  CAS  Google Scholar 

  • Garassino MC, Marabese M, Rusconi P et al (2011) Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol: Off J Eur Soc Med Oncol 22:235–237

    Article  CAS  Google Scholar 

  • Garon EB, Moran T, Barlesi F et al (2012) Phase II study of the HSP90 inhibitor AUY922 in patients with previously treated, advanced non-small cell lung cancer (NSCLC). J Clin Oncol Off J Am Soc Clin Oncol 27. https://doi.org/10.1200/jco.2012.30.15_suppl.7543. Journal of Clinical Oncology 30, no. 15_suppl (May 20 2012) 7543–7543

  • Garon EB, Finn RS, Hamidi H et al (2013) The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth. Mol Cancer Ther 12:890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar N, Sharp SY, Eccles SA et al (2010) Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma. Mol Cancer Ther 9:1219–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge J, Normant E, Porter JR et al (2006) Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J Med Chem 49:4606–4615

    Article  CAS  PubMed  Google Scholar 

  • Goldman JW, Raju RN, Gordon GA et al (2013) A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer 13:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Casal R, Bhattacharya C, Epperly MW et al (2015) The HSP90 inhibitor ganetespib radiosensitizes human lung adenocarcinoma cells. Cancers 7:876–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham B, Curry J, Smyth T et al (2012) The heat shock protein 90 inhibitor, AT13387, displays a long duration of action in vitro and in vivo in non-small cell lung cancer. Cancer Sci 103:522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gridelli C, Rossi A, Carbone DP et al (2015) Non-small-cell lung cancer. Nat Rev Dis Primers 1:15009

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanson BE, Vesole DH (2009) Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent. Expert Opin Investig Drugs 18:1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Harada D, Kozuki T, Nogami N et al (n.d.) MA 07.11 a phase II study of trastuzumab emtansine in HER2-positive non-small-cell-lung cancer. J Thorac Oncol 12:S1829

    Article  Google Scholar 

  • Hirsch FR, Scagliotti GV, Mulshine JL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet (London, England) 389:299–311

    Article  CAS  Google Scholar 

  • Hong YS, Jang WJ, Chun KS et al (2014) Hsp90 inhibition by WK88-1 potently suppresses the growth of gefitinib-resistant H1975 cells harboring the T790M mutation in EGFR. Oncol Rep 31:2619–2624

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Chen S, Han H et al (2014) Expression of Hsp90alpha and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation. Int J Clin Exp Pathol 7:1544–1552

    PubMed  PubMed Central  Google Scholar 

  • Ivanova E, Bahcall M, Aref A et al. (n.d.) MA 07.12 short-term culture of patient derived tumor organoids identify neratinib/trastuzumab as an effective combination in HER2 mutant lung cancer. J Thorac Oncol 12:S1829-S30

    Article  Google Scholar 

  • Jang WJ, Jung SK, Kang JS et al (2014) Anti-tumor activity of WK88-1, a novel geldanamycin derivative, in gefitinib-resistant non-small cell lung cancers with met amplification. Cancer Sci 105:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janne PA, Shaw AT, Pereira JR et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Chen JC, Rastelli G et al (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10:361–368

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Miller K, Rosen L et al (2012a) A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res: Off J Am Assoc Cancer Res 18:5090–5098

    Article  CAS  Google Scholar 

  • Jhaveri K, Taldone T, Modi S et al (2012b) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Yu HA, Hart EM et al (2015) Phase I/II study of HSP90 inhibitor AUY922 and erlotinib for EGFR-mutant lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol 33:1666–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju YS, Lee WC, Shin JY et al (2012) A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 22:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Katayama R, Khan TM, Benes C et al (2011) Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A 108:7535–7540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama R, Shaw AT, Khan TM et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 4:120ra17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SH, Tangallapally R, Kim IC et al (2015) Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100. Bioorg Med Chem Lett 25:5254–5257

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Ichikawa H, Totoki Y et al (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18:375–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi H, Yamada T, Takeuchi S et al (2012) Hsp90 inhibition overcomes HGF-triggering resistance to EGFR-TKIs in EGFR-mutant lung cancer by decreasing client protein expression and angiogenesis. J Thorac Oncol: Off Publ Int Assoc Stud Lung Cancer 7:1078–1085

    Article  CAS  Google Scholar 

  • Koll TT, Feis SS, Wright MH et al (2008) HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair. Mol Cancer Ther 7:1985–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopecek P, Altmannova K, Weigl E (2001) Stress proteins: nomenclature, division and functions. Biomed Pap Med Fac Univ Palacky, Olomouc, Czechoslovakia 145:39–47

    Article  CAS  Google Scholar 

  • Kris MG, Johnson BE, Berry LD et al (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311:1998–2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA et al (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummar S, Gutierrez ME, Gardner ER et al (2010) Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer (Oxford, England: 1990) 46:340–347

    Article  CAS  Google Scholar 

  • Kurebayashi J, Otsuki T, Kurosumi M et al (2001) A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res: Gann 92:1342–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak EL, Bang Y-J, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamottke B, Kaiser M, Mieth M et al (2012) The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol 88:406–415

    Article  CAS  PubMed  Google Scholar 

  • Lancet JE, Gojo I, Burton M et al (2010) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24:699–705

    Article  CAS  PubMed  Google Scholar 

  • Langer T, Rosmus S, Fasold H (2003) Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biol Int 27:47–52

    Article  CAS  PubMed  Google Scholar 

  • Langer CJ, Besse B, Gualberto A et al (2010) The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol 28:5311–5320

    Article  PubMed  Google Scholar 

  • Lee Y, Sunada S, Hirakawa H et al (2017) TAS-116, a novel Hsp90 inhibitor, selectively enhances radiosensitivity of human cancer cells to X-rays and carbon ion radiation. Mol Cancer Ther 16:16–24

    Article  CAS  PubMed  Google Scholar 

  • Lipson D, Capelletti M, Yelensky R et al (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18:382–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevan D, Rensvold DM, Kurtin SE, Cleary JM (2012) First-in-human phase I study: Results of a second-generation non-ansamycin heat shock protein 90 (HSP90) inhibitor AT13387 in refractory solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 30(suppl):3028

    Google Scholar 

  • Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta 1823:674–682

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MM, Pick E, Kluger Y et al (2008) HSP90 as a marker of progression in melanoma. Ann Oncol: Off J Eur Soc Med Oncol 19:590–594

    Article  CAS  Google Scholar 

  • McDowell CL, Bryan Sutton R, Obermann WM (2009) Expression of Hsp90 chaperone [corrected] proteins in human tumor tissue. Int J Biol Macromol 45:310–314

    Article  CAS  PubMed  Google Scholar 

  • Menezes DL, Taverna P, Jensen MR et al (2012) The novel oral Hsp90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo. Mol Cancer Ther 11:730–739

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi S, Peyrat JF, Brion JD et al (2011) Heat-shock protein 90 inhibitors as antitumor agents: a survey of the literature from 2005 to 2010. Expert Opin Ther Pat 21:1501–1542

    Article  CAS  PubMed  Google Scholar 

  • Millington GW (2013) Mutations of the BRAF gene in human cancer, by Davies et al. (Nature 2002; 417: 949–54). Clin Exp Dermatol 38:222–223

    Article  CAS  PubMed  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    Article  CAS  PubMed  Google Scholar 

  • Modi S, Saura C, Henderson C et al (2013) A multicenter trial evaluating retaspimycin HCL (IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res Treat 139:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  • Morimura O, Minami T, Kijima T et al. (n.d.) P1.07–033 trastuzumab emtansine (T-DM1) suppresses the growth of HER2-positive small-cell lung cancer in preclinical models. J Thorac Oncol 12:S716-S17

    Google Scholar 

  • Murshid A, Gong J, Stevenson MA et al (2011) Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 10:1553–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neckers L (2006) Using natural product inhibitors to validate Hsp90 as a molecular target in cancer. Curr Top Med Chem 6:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res: Off J Am Assoc Cancer Res 18:64–76

    Article  CAS  Google Scholar 

  • Nguyen DM, Desai S, Chen A et al (2000) Modulation of metastasis phenotypes of non-small cell lung cancer cells by 17-allylamino 17-demethoxy geldanamycin. Ann Thorac Surg 70:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DM, Lorang D, Chen GA et al (2001) Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg 72:371–378. discussion 78–9

    Article  CAS  PubMed  Google Scholar 

  • Nogova L, Mattonet C, Scheffler M et al (2014) 1238PTRY – a phase ii study to evaluate safety and efficacy of combined trastuzumab and the HSP90 inhibitor AUY922 in advanced non-small-cell lung cancer (NSCLC) with HER2 overexpression or amplification or mutation. Ann Oncol 25:iv433

    Article  Google Scholar 

  • Normant E, Paez G, West KA et al (2011) The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene 30:2581–2586

    Article  CAS  PubMed  Google Scholar 

  • O’Connell BC, O’Callaghan K, Tillotson B et al (2014) HSP90 inhibition enhances antimitotic drug-induced mitotic arrest and cell death in preclinical models of non-small cell lung cancer. PLoS One 9:e115228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochiana SO, Taldone T, Chiosis G (2014) Designing drugs against Hsp90 for cancer therapy. In: Houry WAS (ed) The molecular chaperones interaction networks in protein folding and degradation, vol 1. Springer, New York, pp 151–183

    Chapter  Google Scholar 

  • Ohkubo S, Kodama Y, Muraoka H et al (2015) TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 14:14–22

    Article  CAS  PubMed  Google Scholar 

  • Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paraiso KH, Haarberg HE, Wood E et al (2012) The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Cancer Res: Off J Am Assoc Cancer Res 18:2502–2514

    Article  CAS  Google Scholar 

  • Park KS, Oh B, Lee MH et al (2016) The HSP90 inhibitor, NVP-AUY922, sensitizes KRAS-mutant non-small cell lung cancer with intrinsic resistance to MEK inhibitor, trametinib. Cancer Lett 372:75–81

    Article  CAS  PubMed  Google Scholar 

  • Patel HJ, Modi S, Chiosis G et al (2011) Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin Drug Discovery 6:559–587

    Article  CAS  Google Scholar 

  • Patel K, Wen J, Magliocca K et al (2014) Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation. Cancer Chemother Pharmacol 74:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska Z, Botelho Costa D, Huberman M et al (2015) Activity of AUY922 in NSCLC patients with EGFR exon 20 insertions. J Clin Oncol 33:abstr 8015

    Article  Google Scholar 

  • Piper PW, Millson SH (2011) Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals (Basel, Switzerland) 4:1400–1422

    Article  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

  • Proia DA, Acquaviva J, Jiang Q et al (2012a) Preclinical activity of the Hsp90 inhibitor, ganetespib, in ALK- and ROS1-driven cancers. J Clin Oncol 30:3090

    Google Scholar 

  • Proia DA, Sang J, He S et al (2012b) Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models. Investig New Drugs 30:2201–2209

    Article  CAS  Google Scholar 

  • Ramalingam SS, Zaric B, Ceric T, Ciuleanu TE et al (2014) Galaxy-2 trial (NCT01798485): a randomized phase 3 study of ganetespib in combination with docetaxel versus docetaxel alone in patients with advanced lung adenocarcinoma. J Clin Oncol 32:5s

    Article  Google Scholar 

  • Ramalingam S, Goss G, Rosell R et al (2015) A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1). Ann Oncol: Off J Eur Soc Med Oncol 26:1741–1748

    Article  CAS  Google Scholar 

  • Reck M, Rabe KF (2017) Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med 377:849–861

    Article  CAS  PubMed  Google Scholar 

  • Rice JW, Veal JM, Barabasz A et al (2009) Targeting of multiple signaling pathways by the Hsp90 inhibitor SNX-2112 in EGFR resistance models as a single agent or in combination with erlotinib. Oncol Res 18:229–242

    Article  CAS  PubMed  Google Scholar 

  • Riely GJ, Stoller RG, Egorin M, Solit D, Dunbar J, Savage A, Walker J, Grayzel D, Ross R, Weiss GJ (2009) A phase Ib trial of IPI-504 (retaspimycin hydrochloride), a novel Hsp90 inhibitor, in combination with docetaxel. J Clin Oncol 27:3547–3547

    Article  CAS  Google Scholar 

  • Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  CAS  PubMed  Google Scholar 

  • Rizzolo K, Huen J, Kumar A et al (2017) Features of the chaperone cellular network revealed through systematic interaction mapping. Cell Rep 20:2735–2748

    Article  CAS  PubMed  Google Scholar 

  • da Rocha Dias S, Friedlos F, Light Y et al (2005) Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 65:10686–10691

    Article  PubMed  CAS  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R et al (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  • Rohl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    Article  PubMed  CAS  Google Scholar 

  • Rosell R, Karachaliou N (2016) Large-scale screening for somatic mutations in lung cancer. Lancet (London, England) 387:1354–1356

    Article  Google Scholar 

  • Saif MW, Erlichman C, Dragovich T et al (2013) Open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of intravenously administered CNF1010 (17-(allylamino)-17-demethoxygeldanamycin [17-AAG]) in patients with solid tumors. Cancer Chemother Pharmacol 71:1345–1355

    Article  CAS  PubMed  Google Scholar 

  • Sang J, Acquaviva J, Friedland JC et al (2013) Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 3:430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvage F, Messaoudi S, Fattal E et al (2017) Heat shock proteins and cancer: how can nanomedicine be harnessed? J Control Release: Off J Control Release Soc 248:133–143

    Article  CAS  Google Scholar 

  • Sawai A, Chandarlapaty S, Greulich H et al (2008) Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res 68:589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Streller F, Scheel AH et al (2014) HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis 5:e980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweinfest CW, Graber MW, Henderson KW et al (1998) Cloning and sequence analysis of Hsp89alpha DeltaN, a new member of theHsp90 gene family. Biochim Biophys Acta 1398:18–24

    Article  CAS  PubMed  Google Scholar 

  • Senju M, Sueoka N, Sato A et al (2006) Hsp90 inhibitors cause G2/M arrest associated with the reduction of Cdc25C and Cdc2 in lung cancer cell lines. J Cancer Res Clin Oncol 132:150–158

    Article  CAS  PubMed  Google Scholar 

  • Sequist LV, Gettinger S, Senzer NN et al (2010) Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol 28:4953–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sequist LV, Waltman BA, Dias-Santagata D et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessa C, Shapiro GI, Bhalla KN et al (2013) First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin Cancer Res: Off J Am Assoc Cancer Res 19:3671–3680

    Article  CAS  Google Scholar 

  • Sharp SY, Boxall K, Rowlands M et al (2007) In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors. Cancer Res 67:2206–2216

    Article  CAS  PubMed  Google Scholar 

  • Shaw AT, Yeap BY, Solomon BJ et al (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12:1004–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen G, Blagg BS (2005) Radester, a novel inhibitor of the Hsp90 protein folding machinery. Org Lett 7:2157–2160

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Shapiro GI (2008) Heat shock protein 90 inhibition in lung cancer. J Thorac Oncol: Off Publ Int Assoc Stud Lung Cancer 3:S152–S159

    Article  Google Scholar 

  • Shimamura T, Lowell AM, Engelman JA et al (2005) Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 65:6401–6408

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Li D, Ji H et al (2008) Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res 68:5827–5838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura T, Perera SA, Foley KP et al (2012) Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 18:4973–4985

    Article  CAS  Google Scholar 

  • Shiotsu Y, Neckers LM, Wortman I et al (2000) Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 96:2284–2291

    CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Smyth T, Paraiso KH, Hearn K et al (2014) Inhibition of HSP90 by AT13387 delays the emergence of resistance to BRAF inhibitors and overcomes resistance to dual BRAF and MEK inhibition in melanoma models. Mol Cancer Ther 13:2793–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Socinski MA, Goldman J, El-Hariry I et al (2013) A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 19:3068–3077

    Article  CAS  Google Scholar 

  • Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Shiotsu Y, Akinaga S et al (2003) Development of radicicol analogues. Curr Cancer Drug Targets 3:359–369

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des 19:366–376

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38–43

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram A, Socinski MA, Burns TF (2014) Personalized treatment of EGFR mutant and ALK-positive patients in NSCLC. Expert Opin Pharmacother 15:2693–2708

    Article  CAS  PubMed  Google Scholar 

  • Song D, Chaerkady R, Tan AC et al (2008) Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther 7:3275–3284

    Article  CAS  PubMed  Google Scholar 

  • Sos ML, Michel K, Zander T et al (2009) Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest 119:1727–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreedhar AS, Kalmar E, Csermely P et al (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    Article  PubMed  CAS  Google Scholar 

  • Supko JG, Hickman RL, Grever MR et al (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Hideshima T, Mimura N et al (2015) Anti-tumor activities of selective HSP90alpha/beta inhibitor, TAS-116, in combination with bortezomib in multiple myeloma. Leukemia 29:510–514

    Article  CAS  PubMed  Google Scholar 

  • Sydor JR, Normant E, Pien CS et al (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A 103:17408–17413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Synta Announces Termination for Futility of Ganetespib Phase 3 GALAXY-2 Trial in Lung Cancer (2015) Businesswirecom

    Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Soda M, Togashi Y et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–381

    Article  CAS  PubMed  Google Scholar 

  • Tian WL, He F, Fu X et al (2014) High expression of heat shock protein 90 alpha and its significance in human acute leukemia cells. Gene 542:122–128

    Article  CAS  PubMed  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno T, Tsukuda K, Toyooka S et al (2012) Strong anti-tumor effect of NVP-AUY922, a novel Hsp90 inhibitor, on non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 76:26–31

    Article  Google Scholar 

  • Versteeg S, Mogk A, Schumann W (1999) The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol Gen Genet 261:582–588

    Article  CAS  PubMed  Google Scholar 

  • Von Hoff D, Beeram M, O’Brien S et al (2007) Phase 1 experience with BIIB021, an oral, synthetic, non-ansamycin Hsp90 inhibitor. Mol Cancer Ther 6:A123–AA23

    Article  Google Scholar 

  • Wagner AJ, Chugh R, Rosen LS et al (2013) A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res: Off J Am Assoc Cancer Res 19:6020–6029

    Article  CAS  Google Scholar 

  • Wallis N, Smyth T, Munck J et al (n.d.) 293 activity of the HSP90 inhibitor, AT13387, in ALK-driven tumor models. Eur J Cancer 48:90

    Article  Google Scholar 

  • Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    Article  CAS  PubMed  Google Scholar 

  • Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149–157

    Article  CAS  PubMed  Google Scholar 

  • Workman P, Burrows F, Neckers L et al (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Soga S, Beebe K et al (2007) Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition. Br J Cancer 97:741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Garbaccio RM, Stachel SJ et al (2003) Total synthesis as a resource in the discovery of potentially valuable antitumor agents: cycloproparadicicol. Angew Chem (International ed in English) 42:1280–1284

    Article  CAS  Google Scholar 

  • Yang S, Qu S, Perez-Tores M et al (2006) Association with HSP90 inhibits Cbl-mediated down-regulation of mutant epidermal growth factor receptors. Cancer Res 66:6990–6997

    Article  CAS  PubMed  Google Scholar 

  • Young A, Lyons J, Miller AL et al (2009) Ras signaling and therapies. Adv Cancer Res 102:1–17

    Article  CAS  PubMed  Google Scholar 

  • Zackova M, Mouckova D, Lopotova T et al (2013) Hsp90 – a potential prognostic marker in CML. Blood Cells Mol Dis 50:184–189

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berlin, Germany) 82:488–499

    CAS  Google Scholar 

  • Zhao R, Davey M, Hsu YC et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the LUNGevity Foundation for support of preclinical Hsp90 inhibitor studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy F. Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, S., Burns, T.F. (2019). Heat Shock Protein 90 Inhibitors in Lung Cancer Therapy. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_19

Download citation

Publish with us

Policies and ethics