Skip to main content

IER5 Is a p53-Regulated Activator of HSF1 That Contributes to Promotion of Cancer

  • Chapter
  • First Online:
Heat Shock Proteins in Signaling Pathways

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

The p53 gene is one of the most frequently mutated genes in human cancer and functions as a tumor suppressor and transcriptional factor that regulates various genes involved in cancer. One p53 target gene is IER5, whose function was initially unknown, but we have shown facilitates the activation of the transcriptional activator HSF1 by recruiting the PP2A phosphatase to HSF1, leading to its hypo-phosphorylation and activation. HSF1 is the master transcriptional regulator of the HSP genes, which encode molecular chaperones essential for cellular homeostasis. HSP also exhibit anti-apoptotic functions by repressing pro-apoptotic factors, thereby protecting stressed cells from cell death. Although HSF1-HSP pathway is generally activated by cellular stress such as heat shock, this pathway is also hyperactivated in cancers independent of heat shock and contribute to promotion of cancer development and resistance to cancer treatments. We observed that IER5 is overexpressed in several cancers in a p53-independent manner and contributes to tumor malignancy via activation of the HSF1-HSP pathway. We propose a model in which IER5 activates HSF1 in cancer as part of the p53-IER5-HSF1-HSP pathway, thereby providing stress resistance to cancer cells. This section briefly reviews the roles of HSF1, HSP, p53 and IER5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4C-seq:

circular chromatin conformation capture sequencing

ABC:

ATP binding cassette

ABCB1:

ATP-binding cassette sub-family B member 1

AIF:

apoptosis-inducing factor

Apaf-1:

apoptosis protease activating factor 1

ASK1:

apoptosis signal regulating kinase 1

BAG3:

Bcl-2-associated athanogene domain 3

Bax:

Bcl-2-associated X protein

CAD:

caspase activated DNase

ChIP-seq:

chromatin immunoprecipitation sequencing

GOF:

gain-of-function

HSEs:

heat shock elements

HSF1:

heat shock factor 1

HSP:

heat shock proteins

ICAD:

inhibitor of CAD

IER5:

immediate early gene response 5

LFS:

Li-Fraumeni syndrome

MDM2:

murine double minute 2

MDR:

multidrug resistance

MDR-1:

multidrug resistance protein 1

Pgp:

P-glycoprotein

PP2A:

protein phosphatase 2A

PTEN:

phosphatase and tensin homolog

References

  • Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH (2015) Molecular docking and dynamic simulation evaluation of Rohinitib – Cantharidin based novel HSF1 inhibitors for cancer therapy. J Mol Graph Model 61:141–149

    Article  CAS  PubMed  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Kawase T, Okabe A et al (2016) IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis. Sci Rep 6:19174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylon Y, Oren M (2007) Living with p53, dying of p53. Cell 130:597–600

    Article  CAS  PubMed  Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  CAS  PubMed  Google Scholar 

  • Baler R, Zou J, Voellmy R (1996) Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones 1:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barak Y, Juven T, Haffner R, Oren AM (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlev NA, Liu L, Chehab NH et al (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Vousden KH (2007) p53: new roles in metabolism. Trends Cell Biol 17:286–291

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4:793–805

    Article  CAS  PubMed  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18

    Google Scholar 

  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96:13777–13782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen J, Loo A et al (2013) Targeting HSF1 sensitizes cancer cells to HSP90 inhibition. Oncotarget 4:816–829

    PubMed  PubMed Central  Google Scholar 

  • Chin KV, Ueda K, Pastan I, Gottesman MM (1992) Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:459–462

    Article  CAS  PubMed  Google Scholar 

  • Chou SD, Prince T, Gong J, Calderwood SK (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7:e39679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu B, Zhong R, Soncin F, Stevenson MA, Calderwood SK (1998) Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem 273:18640–18646

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciocca DR, Clark GM, Tandon AK, Fuqua SA, Welch WJ, McGuire WL (1993) Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 85:570–574

    Article  CAS  PubMed  Google Scholar 

  • Cornford PA, Dodson AR, Parsons KF et al (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60:7099–7105

    CAS  PubMed  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayalan Naidu S, Dinkova-Kostova AT (2017) Regulation of the mammalian heat shock factor 1. FEBS J 284:1606–1627

    Article  CAS  PubMed  Google Scholar 

  • DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76:2420–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X-l, Jiang T, Wen Z-q, Gao R, Cui M, Wang F (2009) Silencing of heat shock protein 70 expression enhances radiotherapy efficacy and inhibits cell invasion in endometrial cancer cell line. Croat Med J 50:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumaz N, Milne DM, Meek DW (1999) Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett 463:312–316

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49

    Article  CAS  PubMed  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649

    Article  CAS  PubMed  Google Scholar 

  • Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezawa I, Sawai Y, Kawase T et al (2016) Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci 107:734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    Article  CAS  PubMed  Google Scholar 

  • Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26:1268–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061–2070

    Article  CAS  PubMed  Google Scholar 

  • Glatter T, Wepf A, Aebersold R, Gstaiger M (2009) An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 5:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Hinds P, Finlay C, Levine AJ (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hnisz D, Abraham BJ, Lee TI et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

    Article  CAS  PubMed  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A et al (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y, Kawabata S, Sakurai H (2015) HSF1 transcriptional activity is modulated by IER5 and PP2A/B55. FEBS Lett 589:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Jacobson BA, Chen EZ, Tang S et al (2015) Triptolide and its prodrug minnelide suppress Hsp70 and inhibit in vivo growth in a xenograft model of mesothelioma. Genes Cancer 6:144–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Moskophidis D, Mivechi NF (2011) Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab 14:91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawase T, Ichikawa H, Ohta T et al (2008) p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene 27:3797–3810

    Article  CAS  PubMed  Google Scholar 

  • Kawase T, Ohki R, Shibata T et al (2009) PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell 136:535–550

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Yoon JH, Lee SH, Ahn SG (2005) Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280:12653–12657

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Kim Y, Kwon BM, Han DC (2013) The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. J Biol Chem 288:28713–28726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King KL, Li AF, Chau GY et al (2000) Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival. Cancer 88:2464–2470

    Article  CAS  PubMed  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kress M, May E, Cassingena R, May P (1979) Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz C, Pebler S, Otte J, von der Ahe D (1995) Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 23:3710–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Li D, Yallowitz A, Ozog L, Marchenko N (2014) A gain-of-function mutant p53-HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis 5:e1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Article  CAS  PubMed  Google Scholar 

  • Loven J, Hoke HA, Lin CY et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128

    Article  CAS  PubMed  Google Scholar 

  • Malkin D (2011) Li-fraumeni syndrome. Genes Cancer 2:475–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melo CA, Drost J, Wijchers PJ et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  CAS  PubMed  Google Scholar 

  • Mendillo ML, Santagata S, Koeva M et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno H, Kitada K, Nakai K, Sarai A (2009) PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    Article  CAS  PubMed  Google Scholar 

  • Nanbu K, Konishi I, Mandai M et al (1998) Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect Prev 22:549–555

    Article  CAS  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Ohki R, Kawase T, Ohta T, Ichikawa H, Taya Y (2007) Dissecting functional roles of p53 N-terminal transactivation domains by microarray expression analysis. Cancer Sci 98:189–200

    Article  CAS  PubMed  Google Scholar 

  • Ohki R, Saito K, Chen Y et al (2014) PHLDA3 is a novel tumor suppressor of pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A 111:E2404–E2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi K, Takahashi A, Yokota S, Ohnishi T (2004) Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status. Int J Radiat Biol 80:607–614

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  CAS  PubMed  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312:649–651

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Cho SG, Kim CK et al (2002) Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 22:7721–7730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piura B, Rabinovich A, Yavelsky V, Wolfson M (2002) Heat shock proteins and malignancies of the female genital tract. Harefuah 141:969–972. 1010, 1009

    CAS  PubMed  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT (2000) Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 20:8458–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW, Appella E (2000) Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275:9278–9283

    Article  CAS  PubMed  Google Scholar 

  • Sakahira H, Nagata S (2002) Co-translational folding of caspase-activated DNase with Hsp70, Hsp40, and inhibitor of caspase-activated DNase. J Biol Chem 277:3364–3370

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  PubMed  Google Scholar 

  • Santagata S, Hu R, Lin NU et al (2011) High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A 108:18378–18383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Taya Y, Prives C (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18:1815–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soncin F, Zhang X, Chu B et al (2003) Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2. Biochem Biophys Res Commun 303:700–706

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, MacPherson D, Sas D et al (2001) Regulation of PTEN transcription by p53. Mol Cell 8:317–325

    Article  CAS  PubMed  Google Scholar 

  • Syrigos KN, Harrington KJ, Karayiannakis AJ et al (2003) Clinical significance of heat shock protein-70 expression in bladder cancer. Urology 61:677–680

    Article  PubMed  Google Scholar 

  • Takahashi T, Nau MM, Chiba I et al (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491–494

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041–9047

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Noguchi T, Kikuchi R, Sato T, Uchida Y, Yokoyama S (2001) Analysis of the survival period in resectable stage IV gastric cancer. Ann Surg Oncol 8:215–221

    Article  CAS  PubMed  Google Scholar 

  • Takikawa M, Ohki R (2017) A vicious partnership between AKT and PHLDA3 to facilitate neuroendocrine tumors. Cancer Sci 108:1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Arakawa H, Yamaguchi T et al (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404:42–49

    Article  CAS  PubMed  Google Scholar 

  • Tchenio T, Havard M, Martinez LA, Dautry F (2006) Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 26:580–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanner F, Sutterlin MW, Kapp M et al (2003) Heat-shock protein 70 as a prognostic marker in node-negative breast cancer. Anticancer Res 23:1057–1062

    CAS  PubMed  Google Scholar 

  • Uchiyama T, Atsuta H, Utsugi T et al (2007) HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 190:321–329

    Article  CAS  PubMed  Google Scholar 

  • Unger T, Juven-Gershon T, Moallem E et al (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18:1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uozaki H, Ishida T, Kakiuchi C et al (2000) Expression of heat shock proteins in osteosarcoma and its relationship to prognosis. Pathol Res Pract 196:665–673

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A, Stevenson MA, Calderwood SK (2004) Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress. J Biol Chem 279:49460–49469

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Khaleque MA, Zhao MJ, Zhong R, Gaestel M, Calderwood SK (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 281:782–791

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Seebacher N, Shi H, Kan Q, Duan Z (2017) Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 8:84559–84571

    PubMed  PubMed Central  Google Scholar 

  • Wei CL, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  CAS  PubMed  Google Scholar 

  • Westerheide SD, Kawahara TL, Orton K, Morimoto RI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281:9616–9622

    Article  CAS  PubMed  Google Scholar 

  • Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A (2012) Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 7:e51426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams M, Lyu MS, Yang YL et al (1999) Ier5, a novel member of the slow-kinetics immediate-early genes. Genomics 55:327–334

    Article  CAS  PubMed  Google Scholar 

  • Xiang TX, Li Y, Jiang Z et al (2008) RNA interference-mediated silencing of the Hsp70 gene inhibits human gastric cancer cell growth and induces apoptosis in vitro and in vivo. Tumori 94:539–550

    Article  CAS  PubMed  Google Scholar 

  • Xing H, Hong Y, Sarge KD (2007) Identification of the PP2A-interacting region of heat shock transcription factor 2. Cell Stress Chaperones 12:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang J, Zhou Y, Wang Y, Wang S, Zhang W (2012) Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Lett 321:137–143

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Lee JM, Namkoong SE et al (2003) cDNA microarray analysis of gene expression profiles associated with cervical cancer. Cancer Res Treat 35:451–459

    Article  PubMed  Google Scholar 

  • Yoon YJ, Kim JA, Shin KD et al (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286:1737–1747

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Murshid A, Prince T, Calderwood SK (2011) Protein kinase A regulates molecular chaperone transcription and protein aggregation. PLoS One 6:e28950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marc Lamphier for critical reading of the manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research (B) (#17H03587) (R.O.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Development of Innovative Research on Cancer Therapeutics (P-DIRECT)/Ministry of Education, Culture, Sports, Science and Technology of Japan (R.O.), research grants from Research Grant of the Princess Takamatsu Cancer Research Fund (R.O.), the Mitsubishi Foundation (to R.O.), the NOVARTIS Foundation (Japan) for the Promotion of Science (to R.O.), the Project Mirai Cancer Research Grants (R.O.), the Okinaka Memorial Institute for Medical Research (to R.O.), the National Cancer Center Research and Development Fund (to R.O., 29-E-2), the Life Science Foundation of Japan (to R.O.), and Foundation for Promotion of Cancer Research in Japan (to R.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rieko Ohki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawase, T., Chen, Y., Ohki, R. (2019). IER5 Is a p53-Regulated Activator of HSF1 That Contributes to Promotion of Cancer. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_13

Download citation

Publish with us

Policies and ethics