Skip to main content

Targeting Heat Shock Proteins in Multiple Myeloma

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

The heat shock proteins (Hsp), the family of molecular chaperons, are key proteins in protein folding and maturation. The client proteins of Hsp are critical in number of biological processes including cellular proliferation, differentiation, survival, metastasis, invasion, and angiogenesis. Thus, Hsp family becomes one of the desirable targets for cancer treatment. It has been demonstrated that Hsp overexpress in multiple myeloma and linked in poor prognosis and relapse. This chapter describes about the Hsp and their possible link with the pathogenesis of multiple myeloma. It addresses the advancement and challenges in the development of Hsp inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

Aha1:

activator of HSP90 ATPase activity 1

ALT:

alanine aminotransferase

Apaf-1:

apoptotic peptidase activating factor 1

AST:

aspartate aminotransferase

ATP:

adenosine triphosphate

Bax:

Bcl-2-associated X

Bcl-2:

B-cell lymphoma-2

Cdc37:

cell division cycle 37

Chip:

carboxy terminus of Hsc70 interacting protein

Cns1:

tetratricopeptide repeat domain 4

CR:

connecting linker region

CTD:

C terminal domain

ErbB:

epidermal growth factor receptor

ER:

Estrogen receptor

Her3:

erb-b2 receptor tyrosine kinase 3

HIF-1α:

hypoxia inducible factor 1 subunit alpha

Hip:

Hsc70-interacting protein

Hop:

Hsp70-Hsp90 organizing protein

HSF-1:

heat shock transcription factor-1, Hsp, heat shock proteins

MAPK:

Mitogen-activated protein kinase 1

MEEVD:

Met-Glu-Glu-Val-Asp motif

Mek1/2:

mitogen activated protein kinase kinase

MD:

middle domain

NF-κB:

nuclear factor kappa-light-chain- enhancer of activated B cells

NTD:

N terminal domain

PP5:

protein phosphatase 5

p23:

prostaglandin E synthase 3

Smac:

second Mitochondria-derived activator of caspases

Tom70:

translocase of outer mitochondrial membrane 70

TPR:

tetratricopeptide repeat domains

Unc45:

unc-45 myosin chaperone B

References

  • Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Azad AA, Zoubeidi A, Gleave ME, Chi KN (2015) Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 12:26–36

    Article  CAS  PubMed  Google Scholar 

  • Bailey CK, Budina-Kolomets A, Murphy ME, Nefedova Y (2015) Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biol Ther 16:1422–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319

    Article  CAS  PubMed  Google Scholar 

  • Banerji U, O’Donnell A, Scurr M et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  CAS  PubMed  Google Scholar 

  • Born EJ, Hartman SV, Holstein SA (2013) Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells. Blood Cancer J 3:e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderwood SK, Gong J (2016) Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem Sci 41:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavaletti G, Jakubowiak AJ (2010) Peripheral neuropathy during bortezomib treatment of multiple myeloma: a review of recent studies. Leuk Lymphoma 51:1178–1187

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh A, Juengst B, Sheridan K, Danella JF, Williams H (2015) Combined inhibition of heat shock proteins 90 and 70 leads to simultaneous degradation of the oncogenic signaling proteins involved in muscle invasive bladder cancer. Oncotarget 6:39821–39838

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadli A, Felts SJ, Wang Q et al (2010) Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the co-chaperone p23. J Biol Chem 285:4224–4231

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:E1978

    Article  PubMed  CAS  Google Scholar 

  • Chauhan D, Li G, Hideshima T et al (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102:3379–3386

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Li G, Auclair D et al (2004) 2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating heat shock Protein-27. Apoptosis 9:149–155

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Piel WH, Gui LM, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  CAS  PubMed  Google Scholar 

  • Ciglia E, Vergin J, Reimann S et al (2014) Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90. PLoS One 9:e96031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo G, Morra G, Meli M, Verkhivker G (2008) Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution. Proc Natl Acad Sci U S A 105:7976–7981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordonnier T, Bishop JL, Shiota M et al (2015) Hsp27 regulates EGF/beta-catenin mediated epithelial to mesenchymal transition in prostate cancer. Int J Cancer 136:E496–E507

    Article  CAS  PubMed  Google Scholar 

  • Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duus J, Bahar HI, Venkataraman G et al (2006) Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma 47:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Flandrin P, Guyotat D, Duval A et al (2008) Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones 13:357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint OP, Kwagh J, Wang FY et al (2009) Tanespimycin prevents bortezomib toxicity and preserves neuronal morphology in primary rat dorsal root ganglion cultures. Blood 114:1112–1112

    Google Scholar 

  • Fortugno P, Beltrami E, Plescia J et al (2003) Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A 100:13791–13796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georget V, Terouanne B, Nicolas JC, Sultan C (2002) Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 41:11824–11831

    Article  CAS  PubMed  Google Scholar 

  • Gerecitano JF, Modi S, Rampal R et al. (2015) Phase I trial of the HSP-90 inhibitor PU-H71. J Clin Oncol 33:2537

    Article  Google Scholar 

  • Gibert B, Eckel B, Gonin V et al (2012) Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 107:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz MP, Toft D, Reid J et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Rocha K, Bali P et al (2005) Abrogation of heat shock protein 70 induction as a strategy, to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65:10536–10544

    Article  CAS  PubMed  Google Scholar 

  • Hawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WM (2006) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26:8385–8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330

    Article  CAS  PubMed  Google Scholar 

  • Holmes JL, Sharp SY, Hobbs S, Workman P (2008) Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 68:1187–1196

    CAS  Google Scholar 

  • Jego G, Hazoume A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stokes J 3rd, Singh UP et al (2016) Targeting Hsp70: a possible therapy for cancer. Cancer Lett 374:156–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon SP, Rabiasz GJ, Hirst GL et al (1995) Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1:1603–1609

    CAS  PubMed  Google Scholar 

  • Lee HW, Lee EH, Kim SH, Roh MS, Jung SB, Choi YC (2013) Heat shock protein 70 (HSP70) expression is associated with poor prognosis in intestinal type gastric cancer. Virchows Arch 463:489–495

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Lee JS, Ko YG, Kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671

    Article  CAS  PubMed  Google Scholar 

  • Lianos GD, Alexiou GA, Mangano A et al (2015) The role of heat shock proteins in cancer. Cancer Lett 360:114–118

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yuan Y, Okumura Y, Shinkai N, Yamauchi H (2010) Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem Biophys Res Commun 394:297–302

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Vielhauer GA, Holzbeierlein JM et al (2015) KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90alpha in prostate Cancer cells. Mol Pharmacol 88:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madamanchi NR, Li S, Patterson C, Runge MS (2001) Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol 21:321–326

    Article  CAS  PubMed  Google Scholar 

  • Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24:1700–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    Article  CAS  PubMed  Google Scholar 

  • Massey AJ, Williamson DS, Browne H et al (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66:535–545

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCollum AK, TenEyck CJ, Sauer BM, Toft DO, Erlichman C (2006) Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res 66:10967–10975

    Article  CAS  PubMed  Google Scholar 

  • McCollum AK, TenEyck CJ, Stensgard B et al (2008) P-glycoprotein-mediated resistance to Hsp90-directed therapy is eclipsed by the heat shock response. Cancer Res 68:7419–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer P, Prodromou C, Hu B et al (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11:647–658

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulick K, Ahn JH, Zong H et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K (1995) Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur J Biochem 233:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nimmanapalli R, Gerbino E, Dalton WS, Gandhi V, Alsina M (2008) HSP70 inhibition reverses cell adhesion mediated and acquired drug resistance in multiple myeloma. Br J Haematol 142:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okawa Y, Hideshima T, Steed P et al (2009) SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood 113:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364:1046–1060

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan CA, Fauq A, Peterson LB, Miller C, Blagg BSJ, Chadli A (2013) Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 288:7313–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper PW, Millson SH (2011) Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals (Basel) 4:1400–1422

    Article  CAS  Google Scholar 

  • Plescia J, Salz W, Xia F et al (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7:457–468

    Article  CAS  PubMed  Google Scholar 

  • ProteinAtlas (2018) The human protein atlas (https://www.proteinatlas.org/)

  • Rajkumar SV, Kumar S (2016) Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 91:101–119

    Article  PubMed  Google Scholar 

  • Ramanathan RK, Egorin MJ, Eiseman JL et al (2007) Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res 13:1769–1774

    Article  CAS  PubMed  Google Scholar 

  • Ratzke C, Mickler M, Hellenkamp B, Buchner J, Hugel T (2010) Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci U S A 107:16101–16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy N, Voorhees PM, Houk BE, Brega N, Hinson JM, Jillela A (2013) Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Cl Lymph Myelom Leuk 13:385–391

    Article  CAS  Google Scholar 

  • Reikvam H, Nepstad I, Sulen A, Gjertsen BT, Hatfield KJ, Bruserud O (2013) Increased antileukemic effects in human acute myeloid leukemia by combining HSP70 and HSP90 inhibitors. Expert Opin Investig Drugs 22:551–563

    Article  CAS  PubMed  Google Scholar 

  • Rerole AL, Jego G, Garrido C (2011) Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol 787:205–230

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Badros AZ, Jagannath S et al (2010) Tanespimycin with bortezomib: activity in relapsed/refractory patients with multiple myeloma. Br J Haematol 150:428–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Chanan-Khan AA, Lonial S et al (2011a) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Brit J Haematol 153:729–740

    Article  CAS  Google Scholar 

  • Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC (2011b) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Brit J Haematol 152:367–379

    Article  CAS  Google Scholar 

  • Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC (2011c) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 152:367–379

    Article  CAS  PubMed  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saluja A, Dudeja V (2008) Heat shock proteins in pancreatic diseases. J Gastroenterol Hepatol 23(Suppl 1):S42–S45

    Article  CAS  PubMed  Google Scholar 

  • Seggewiss-Bernhardt R, Bargou RC, Goh YT et al (2015) Phase 1/1B trial of the heat shock protein 90 inhibitor NVP-AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer 121:2185–2192

    Article  CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Siegel D, Jagannath S, Vesole DH et al (2011) A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma 52:2308–2315

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Ivy SP, Kopil C et al (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13:1775–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreeramulu S, Gande SL, Gobel M, Schwalbe H (2009) Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew Chem Int Ed 48:5853–5855

    Article  CAS  Google Scholar 

  • Stiegler SC, Rubbelke M, Korotkov VS et al (2017) A chemical compound inhibiting the Aha1-Hsp90 chaperone complex. J Biol Chem 292:17073–17083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuhmer T, Zollinger A, Siegmund D et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22:1604–1612

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Ngoka L, Mei Y, Lesoon L, Cowell JK (2012) HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem 287:10051–10059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usmani SZ, Chiosis G (2011) HSP90 inhibitors as therapy for multiple myeloma. Clin Lymphoma Myeloma Leuk 11(Suppl 1):S77–S81

    Article  PubMed  Google Scholar 

  • Voll EA, Ogden IM, Pavese JM et al (2014) Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 5:2648–2663

    Article  PubMed  PubMed Central  Google Scholar 

  • Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol 787:33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Liu TT, Wang HH et al (2011) Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res 13:R101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley SP, McNeish IA (2005) Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol 247:35–88

    Article  CAS  PubMed  Google Scholar 

  • Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Surg 29:748–751

    Article  CAS  PubMed  Google Scholar 

  • Wong DS, Jay DG (2016) Emerging roles of extracellular Hsp90 in cancer. Adv Cancer Res 129:141–163

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang J, Zhou Y, Wang Y, Wang S, Zhang W (2012) Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Lett 321:137–143

    Article  CAS  PubMed  Google Scholar 

  • Yenari MA (2002) Heat shock proteins and neuroprotection. Adv Exp Med Biol 513:281–299

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Kitahara M, Nagata K (2000) Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60:2942–2948

    CAS  PubMed  Google Scholar 

  • Yu Z, Zhi J, Peng X, Zhong X, Xu A (2010) Clinical significance of HSP27 expression in colorectal cancer. Mol Med Rep 3:953–958

    CAS  PubMed  Google Scholar 

  • Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA (2012) Heat shock protein 90 (hsp90) expression and breast cancer. Pharmaceuticals (Basel) 5:1008–1020

    Article  CAS  Google Scholar 

  • Zhang L, Fok JH, Davies FE (2014) Heat shock proteins in multiple myeloma. Oncotarget 5:1132–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tao X, Jin G et al (2016) A targetable molecular chaperone Hsp27 confers aggressiveness in hepatocellular carcinoma. Theranostics 6:558–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful for the proofreading and editing services of Cooper Medical School of Rowan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kale, V.P., Phadtare, S., Amin, S.G., Pandey, M.K. (2019). Targeting Heat Shock Proteins in Multiple Myeloma. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_12

Download citation

Publish with us

Policies and ethics