Advertisement

Primary Biliary Cirrhosis, Primary Sclerosing Cholangitis, and Autoimmune Hepatitis

  • David González-SernaEmail author
  • Martin Kerick
  • Javier Martín
Chapter
  • 294 Downloads
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Autoimmune liver diseases (AILDs), comprising primary biliary cirrhosis (PBC; also referred to as primary biliary cholangitis), primary sclerosing cholangitis (PSC), and autoimmune hepatitis (AIH), are complex conditions in which both genetic and environmental factors may affect the hepatobiliary system. Until recently, risk HLA haplotypes were the only genetic factor identified in these diseases, which were insufficient to explain most of the disease heritability. Nevertheless, thanks to the development of large-scale AILDs patient cohorts and the implementation of high-throughput methods such as genome-wide association studies (GWAS), a large number of genetic associations have emerged. In this chapter, we will provide an overview of the recent insights into genetic background of AILDs.

Keywords

Liver disease PBC PSC AIH HLA GWAS T cells NFKB1 SH2B3 

References

  1. 1.
    Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol. 2013;8:303–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Hirschfield GM, Karlsen TH, Lindor KD, Adams DH. Primary sclerosing cholangitis. Lancet. 2013;382(9904):1587–99.PubMedCrossRefGoogle Scholar
  3. 3.
    Corrigan M, Hirschfield GM, Oo YH, Adams DH. Autoimmune hepatitis: an approach to disease understanding and management. Br Med Bull. 2015;114(1):181–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Hirschfield GM, Chapman RW, Karlsen TH, Lammert F, Lazaridis KN, Mason AL. The genetics of complex cholestatic disorders. Gastroenterology. 2013;144(7):1357–74.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol. 2012;56(5):1181–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Delgado JS, Vodonos A, Malnick S, Kriger O, Wilkof-Segev R, Delgado B, et al. Autoimmune hepatitis in southern Israel: a 15-year multicenter study. J Dig Dis. 2013;14(11):611–8.PubMedGoogle Scholar
  7. 7.
    Gronbaek L, Vilstrup H, Jepsen P. Autoimmune hepatitis in Denmark: incidence, prevalence, prognosis, and causes of death. A nationwide registry-based cohort study. J Hepatol. 2014;60(3):612–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Pares A, Caballeria L, Rodes J. Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid. Gastroenterology. 2006;130(3):715–20.PubMedCrossRefGoogle Scholar
  9. 9.
    European Association for the Study of the Liver. EASL Clinical Practice Guidelines: autoimmune hepatitis. J Hepatol. 2015;63(4):971–1004.CrossRefGoogle Scholar
  10. 10.
    European Association for the Study of the Liver. EASL Clinical Practice Guidelines: liver transplantation. J Hepatol. 2016;64(2):433–85.CrossRefGoogle Scholar
  11. 11.
    Bossen L, Gerussi A, Lygoura V, Mells GF, Carbone M, Invernizzi P. Support of precision medicine through risk-stratification in autoimmune liver diseases—histology, scoring systems, and non-invasive markers. Autoimmun Rev. 2018;17(9):854–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Gershwin ME, Mackay IR, Sturgess A, Coppel RL. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol. 1987;138:3525–31.PubMedGoogle Scholar
  13. 13.
    Somers EC, Thomas SL, Smeeth L, HalL AJ. Are individuals with an autoimmune disease at higher risk of a second autoimmune disorder? Am J Epidemiol. 2009;169(6):749–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Bogdanos DP, Komorowski L. Disease-specific autoantibodies in primary biliary cirrhosis. Clin Chim Acta. 2011;412(7):502–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Migliaccio C, Nishio A, de Water JV, Ansari AA, Leung PSC, Nakanuma Y, et al. Monoclonal antibodies to mitochondrial E2 components define autoepitopes in primary biliary cirrhosis. J Immunol. 1998;161:5157–63.PubMedGoogle Scholar
  16. 16.
    Hashimoto E, Lindor KD, Homburger HA, Dickson ER, Czaja AJ, Wiesner RH, et al. Immunohistochemical characterization of hepatic lymphocytes in primary biliary cirrhosis in comparison with primary sclerosing cholangitis and autoimmune chronic active hepatitis. Mayo Clin Proc. 1993;68(11):1049–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Van den Oord JJ, Sciot R, Desmet VJ. Expression of MHC products by normal and abnormal bile duct epithelium. J Hepatol. 1986;3:310–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Nagano T, Yamamoto K, Matsumoto S, Okamoto R, Tagashira M, Ibuki N, et al. Cytokine profile in the liver of primary biliary cirrhosis. J Clin Immunol. 1999;19:422–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology. 2014;59(5):1944–53.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y, et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med. 2009;360:2544–55.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hirschfield GM, Liu X, Han Y, Gorlov IP, Lu Y, Xu C, et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet. 2010;42(8):655–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet. 2010;42(8):658–60.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2011;43(4):329–32.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nakamura M, Nishida N, Kawashima M, Aiba Y, Tanaka A, Yasunami M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet. 2012;91(4):721–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Juran BD, Hirschfield GM, Invernizzi P, Atkinson EJ, Li Y, Xie G, et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet. 2012;21(23):5209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liu JZ, Almarri MA, Gaffney DJ, Mells GF, Jostins L, Cordell HJ, et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2012;44(10):1137–41.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cordell HJ, Han Y, Mells GF, Li Y, Hirschfield GM, Greene CS, et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun. 2015;6:8019.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kawashima M, Hitomi Y, Aiba Y, Nishida N, Kojima K, Kawai Y, et al. Genome-wide association studies identify PRKCB as a novel genetic susceptibility locus for primary biliary cholangitis in the Japanese population. Hum Mol Genet. 2017;26(3):650–9.PubMedGoogle Scholar
  29. 29.
    Qiu F, Tang R, Zuo X, Shi X, Wei Y, Zheng X, et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun. 2017;8:14828.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Manns MP, Bremm A, Schneider PM, Notghi A, Gerken G, Prager-Eberle M, et al. HLA DRw8 and complement C4 deficiency as risk factors in primary biliary cirrhosis. Gastroenterology. 1991;101(5):1367–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Donaldson PT, Baragiotta A, Heneghan MA, Floreani A, Venturi C, Underhill JA, et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology. 2006;44(3):667–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Invernizzi P, Selmi C, Poli F, Frison S, Floreani A, Alvaro D, et al. Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls. Hepatology. 2008;48(6):1906–12.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Li M, Zheng H, Tian QB, Rui MN, Liu DW. HLA-DR polymorphism and primary biliary cirrhosis: evidence from a meta-analysis. Arch Med Res. 2014;45(3):270–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Umemura T, Joshita S, Ichijo T, Yoshizawa K, Katsuyama Y, Tanaka E, et al. Human leukocyte antigen class II molecules confer both susceptibility and progression in Japanese patients with primary biliary cirrhosis. Hepatology. 2012;55(2):506–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao DT, Liao HY, Zhang X, Liu YM, Zhao Y, Zhang HP, et al. Human leucocyte antigen alleles and haplotypes and their associations with antinuclear antibodies features in Chinese patients with primary biliary cirrhosis. Liver Int. 2014;34(2):220–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Yasunami M, Nakamura H, Tokunaga K, Kawashima M, Nishida N, Hitomi Y, et al. Principal contribution of HLA-DQ alleles, DQB1*06:04 and DQB1*03:01, to disease resistance against primary biliary cholangitis in a Japanese population. Sci Rep. 2017;7(1):11093.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Alric L, Fort M, Izopet J, Vinel JP, Charlet JP, Selves J, et al. Genes of the major histocompatibility complex class II influence the outcome of hepatitis C virus infection. Gastroenterology. 1997;113:1675–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Hendel H, Caillat-Zucman S, Lebuanec H, Carrington M, O’Brien S, Andrieu JM, et al. New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. J Immunol. 1999;162:6942–6.PubMedGoogle Scholar
  39. 39.
    de Gruijl TD, Bontkes HJ, Walboomers JM, Coursaget P, Stukart MJ, Dupuy C, et al. Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. I. Differential T-helper and IgG responses in relation to HPV infection and disease outcome. J Gen Virol. 1999;80:399–408.PubMedCrossRefGoogle Scholar
  40. 40.
    Good-Jacobson KL, Song E, Anderson S, Sharpe AH, Shlomchik MJ. CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J Immunol. 2012;188(9):4217–25.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kumpfel T, Hohlfeld R. TNFRSF1A, TRAPS and multiple sclerosis. Nat Rev Neurol. 2009;5(10):528–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Nishida N, Aiba Y, Hitomi Y, Kawashima M, Kojima K, Kawai Y, et al. NELFCD and CTSZ loci are associated with jaundice-stage progression in primary biliary cholangitis in the Japanese population. Sci Rep. 2018;8(1):8071.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kos J, Vizin T, Fonovic UP, Pislar A. Intracellular signaling by cathepsin X: molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol. 2015;31:76–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Li Y, He X, Schembri-King J, Jakes S, Hayashi J. Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol. 2000;164(10):5199–206.PubMedCrossRefGoogle Scholar
  45. 45.
    Katayama H, Mori T, Seki Y, Anraku M, Iseki M, Ikutani M, et al. Lnk prevents inflammatory CD8(+) T-cell proliferation and contributes to intestinal homeostasis. Eur J Immunol. 2014;44(6):1622–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Joshita S, Umemura T, Tanaka E, Ota M. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis. Clin J Gastroenterol. 2018;11(1):11–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–86.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Gershwin ME, Selmi C, Worman HJ, Gold EB, Watnik M, Utts J, et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology. 2005;42(5):1194–202.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Loftus EV Jr, Harewood GC, Loftus CG, Tremaine WJ, Harmsen WS, Zinsmeister AR, et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut. 2005;54(1):91–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol. 2009;31(3):309–22.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, Briskin M, et al. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol. 2002;160:1445–55.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Grant AJ, Lalor PF, Salmi M, Jalkanen S, Adams DH. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet. 2002;359(9301):150–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Grant AJ, Lalor PF, Hubscher SG, Briskin M, Adams DH. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology. 2001;33(5):1065–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Eksteen B, Grant AJ, Miles A, Curbishley SM, Lalor PF, Hubscher SG, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med. 2004;200(11):1511–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Eksteen B, Miles A, Curbishley SM, Tselepis C, Grant AJ, Walker LSK, et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J Immunol. 2006;177(1):593–603.PubMedCrossRefGoogle Scholar
  57. 57.
    Miles A, Liaskou E, Eksteen B, Lalor PF, Adams DH. CCL25 and CCL28 promote alpha4 beta7-integrin-dependent adhesion of lymphocytes to MAdCAM-1 under shear flow. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1257–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E, et al. CX(3)CR1 and vascular adhesion protein-1-dependent recruitment of CD16(+) monocytes across human liver sinusoidal endothelium. Hepatology. 2010;51(6):2030–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Schrumpf E, Fausa O, Førre O, Dobloug JH, Ritland S, Thorsby E. HLA antigens and immunoregulatory T cells in ulcerative colitis associated with hepatobiliary disease. Scand J Gastroenterol. 1982;17:187–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Chapman RW, Varghese Z, Gaul R, Patel G, Kokinon N, Sherlock S. Association of primary sclerosing cholangitis with HLA-B8. Gut. 1983;24:38–41.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Naess S, Lie BA, Melum E, Olsson M, Hov JR, Croucher PJ, et al. Refinement of the MHC risk map in a scandinavian primary sclerosing cholangitis population. PLoS One. 2014;9(12):e114486.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Price P, Witt C, Allock R, Sayer D, Garlepp M, Kok CC, et al. The genetic basis for the association of the 8.1 ancestral haplotype (Al, B8, DR3) with multiple immunopathological diseases. Immunol Rev. 1999;167:257–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Okada Y, Yamazaki K, Umeno J, Takahashi A, Kumasaka N, Ashikawa K, et al. HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for ulcerative colitis but reduces risk for Crohn’s disease. Gastroenterology. 2011;141(3):864–71 e1-5.PubMedCrossRefGoogle Scholar
  64. 64.
    Donaldson PT, Norris S. Evaluation of the role of MHC Class II alleles, haplotypes and selected amino acid sequences in primary sclerosing cholangitis. Autoimmunity. 2002;35(8):555–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Mells GF, Kaser A, Karlsen TH. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun. 2013;46:41–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Donaldson PT, Farrant JM, Wilkinson ML, Hayllar K, Portmann BC, Williams R. Dual association of HLA DR2 and DR3 with primary sclerosing cholangitis. Hepatology. 1991;13:129–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Wiencke K, Karlsen TH, Boberg KM, Thorsby E, Schrumpf E, Lie BA, et al. Primary sclerosing cholangitis is associated with extended HLA-DR3 and HLA-DR6 haplotypes. Tissue Antigens. 2007;69(2):161–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Henriksen EKK, Viken MK, Wittig M, Holm K, Folseraas T, Mucha S, et al. HLA haplotypes in primary sclerosing cholangitis patients of admixed and non-European ancestry. HLA. 2017;90(4):228–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Karlsen TH, Franke A, Melum E, Kaser A, Hov JR, Balschun T, et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology. 2010;138(3):1102–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Melum E, Franke A, Schramm C, Weismuller TJ, Gotthardt DN, Offner FA, et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet. 2011;43(1):17–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Folseraas T, Melum E, Rausch P, Juran BD, Ellinghaus E, Shiryaev A, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol. 2012;57(2):366–75.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Srivastava B, Mells GF, Cordell HJ, Muriithi A, Brown M, Ellinghaus E, et al. Fine mapping and replication of genetic risk loci in primary sclerosing cholangitis. Scand J Gastroenterol. 2012;47(7):820–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, et al. Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. 2013;58(3):1074–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu JZ, Hov JR, Folseraas T, Ellinghaus E, Rushbrook SM, Doncheva NT, et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet. 2013;45(6):670–5.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ji SG, Juran BD, Mucha S, Folseraas T, Jostins L, Melum E, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet. 2017;49(2):269–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Alberts R, de Vries EMG, Goode EC, Jiang X, Sampaziotis F, Rombouts K, et al. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut. 2018;67:1517–24.PubMedCrossRefGoogle Scholar
  78. 78.
    Henriksen EK, Melum E, Karlsen TH. Update on primary sclerosing cholangitis genetics. Curr Opin Gastroenterol. 2014;30(3):310–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005;5(3):189–200.PubMedCrossRefGoogle Scholar
  80. 80.
    Rai E, Wakeland EK. Genetic predisposition to autoimmunity—what have we learned? Semin Immunol. 2011;23(2):67–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the a chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A. 1997;94:3168–71.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Letourneau S, Krieg C, Pantaleo G, Boyman O. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123(4):758–62.PubMedCrossRefGoogle Scholar
  83. 83.
    Bergqvist I, Eriksson M, Saarikettu J, Eriksson B, Corneliussen B, Grundström T, et al. The basic helix-loop-helix transcription factor E2–2 is involved in T lymphocyte development. Eur J Immunol. 2000;30:2857–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Karlsen TH, Kaser A. Deciphering the genetic predisposition to primary sclerosing cholangitis. Semin Liver Dis. 2011;31(2):188–207.PubMedCrossRefGoogle Scholar
  86. 86.
    Kasler HG, Young BD, Mottet D, Lim HW, Collins AM, Olson EN, et al. Histone deacetylase 7 regulates cell survival and TCR signaling in CD4/CD8 double-positive thymocytes. J Immunol. 2011;186(8):4782–93.PubMedCrossRefGoogle Scholar
  87. 87.
    Dequiedt F, Van Lint J, Lecomte E, Van Duppen V, Seufferlein T, Vandenheede JR, et al. Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med. 2005;201(5):793–804.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Clark K, MacKenzie KF, Petkevicius K, Kristariyanto Y, Zhang J, Choi HG, et al. Phosphorylation of CRTC3 by the salt inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc Natl Acad Sci U S A. 2012;109:16986–91.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis, and management of autoimmune hepatitis. Gastroenterology. 2010;139(1):58–72 e4.CrossRefPubMedGoogle Scholar
  90. 90.
    Manns MP, Czaja AJ, Gorham JD, Krawitt EL, Mieli-Vergani G, Vergani D, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51(6):2193–213.PubMedCrossRefGoogle Scholar
  91. 91.
    Heneghan MA, Yeoman AD, Verma S, Smith AD, Longhi MS. Autoimmune hepatitis. Lancet. 2013;382(9902):1433–44.CrossRefPubMedGoogle Scholar
  92. 92.
    Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1:113–28.PubMedCrossRefGoogle Scholar
  93. 93.
    Liberal R, Grant CR, Mieli-Vergani G, Vergani D. Autoimmune hepatitis: a comprehensive review. J Autoimmun. 2013;41:126–39.PubMedCrossRefGoogle Scholar
  94. 94.
    Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Adaptive immunity in autoimmune hepatitis. Dig Dis. 2010;28(1):63–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One. 2011;6(4):e18909.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhao L, Qiu DK, Ma X. Th17 cells: the emerging reciprocal partner of regulatory T cells in the liver. J Dig Dis. 2010;11(3):126–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Vento S, Cainelli F. Is there a role for viruses in triggering autoimmune hepatitis? Autoimmun Rev. 2004;3(1):61–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Bjornsson E, Talwalkar J, Treeprasertsuk S, Kamath PS, Takahashi N, Sanderson S, et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology. 2010;51(6):2040–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Wu J, Meng Z, Jiang M, Zhang E, Trippler M, Broering R, et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology. 2010;129(3):363–74.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Krawitt EL, Kilby AE, Albertini RJ, Schanfield MS, Chastenay BF, Harper PC, et al. Immunogenetic studies of autoimmune chronic active hepatitis: HLA, immunoglobulin allotypes and autoantibodies. Hepatology. 1987;7:1305–10.PubMedCrossRefGoogle Scholar
  101. 101.
    Seki T, Kiyosawa K, Inoko H, Ota M. Association of autoimmune hepatitis with HLA-Bw54 and DR4 in Japanese patients. Hepatology. 1990;12:1300–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Umemura T, Katsuyama Y, Yoshizawa K, Kimura T, Joshita S, Komatsu M, et al. Human leukocyte antigen class II haplotypes affect clinical characteristics and progression of type 1 autoimmune hepatitis in Japan. PLoS One. 2014;9(6):e100565.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vázquez-García MN, Aláez C, Olivo A, Debaz H, Pérez-Luque E, Burguete A, et al. MHC class II sequences of susceptibility and protection in Mexicans with autoimmune hepatitis. J Hepatol. 1998;28:985–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Lim YS, Oh HB, Choi SE, Kwon OJ, Heo YS, Lee HC, et al. Susceptibility to type 1 autoimmune hepatitis is associated with shared amino acid sequences at positions 70-74 of the HLA-DRB1 molecule. J Hepatol. 2008;48(1):133–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Doherty DG, Donaldson PT, Underhill JA, Farrant JM, Duthie A, Mieli-Vergani G, et al. Allelic sequence variation in the HLA Class II genes and proteins in patients with autoimmune hepatitis. Hepatology. 1994;19:609–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Strettell M, Donaldson P, Thomson L, Santrach P, Moore S, Czaja A, et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–35.PubMedCrossRefGoogle Scholar
  107. 107.
    de Boer YS, van Gerven NM, Zwiers A, Verwer BJ, van Hoek B, van Erpecum KJ, et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147(2):443–52 e5.PubMedCrossRefGoogle Scholar
  108. 108.
    Bittencourt PL, Goldberg AC, Cancado ELR, Porta G, Carrilho FJ, Farias AQ, et al. Genetic heterogeneity in susceptibility to autoimmune hepatitis types 1 and 2. Am J Gastroenterol. 1999;94:1906–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Fortes Mdel P, Machado IV, Gil G, Fernandez-Mestre M, Dagher L, Leon RV, et al. Genetic contribution of major histocompatibility complex class II region to type 1 autoimmune hepatitis susceptibility in Venezuela. Liver Int. 2007;27(10):1409–16.PubMedCrossRefGoogle Scholar
  110. 110.
    Donaldson PT. Genetics of liver disease: immunogenetics and disease pathogenesis. Gut. 2004;53(4):599–608.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Umemura T, Joshita S, Hamano H, Yoshizawa K, Kawa S, Tanaka E, et al. Association of autoimmune hepatitis with Src homology 2 adaptor protein 3 gene polymorphisms in Japanese patients. J Hum Genet. 2017;62(11):963–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Blonska M, Lin X. NF-kappaB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;21(1):55–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology. 2000;31:49–53.PubMedCrossRefGoogle Scholar
  114. 114.
    McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol. 1999;77:1–10.PubMedCrossRefGoogle Scholar
  115. 115.
    Hiraide A, Imazeki F, Yokosuka O, Kanda T, Kojima H, Fukai K, et al. Fas polymorphisms influence susceptibility to autoimmune hepatitis. Am J Gastroenterol. 2005;100(6):1322–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Oka S, Higuchi T, Furukawa H, Nakamura M, Komori A, Abiru S, et al. Association of a single nucleotide polymorphism in TNIP1 with type-1 autoimmune hepatitis in the Japanese population. J Hum Genet. 2018;63(6):739–44.PubMedCrossRefGoogle Scholar
  117. 117.
    Borman MA, Urbanski S, Swain MG. Anti-TNF-induced autoimmune hepatitis. J Hepatol. 2014;61(1):169–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David González-Serna
    • 1
    Email author
  • Martin Kerick
    • 1
  • Javier Martín
    • 1
  1. 1.Instituto de Parasitología y Biomedicina ‘López-Neyra’, IPBLN-CSIC, Parque Tecnológico Ciencias de la SaludGranadaSpain

Personalised recommendations