Advertisement

ANCA-Associated Vasculitis

  • Francesco Bonatti
  • Alessia Adorni
  • Antonio Percesepe
  • Augusto VaglioEmail author
  • Davide Martorana
Chapter
  • 274 Downloads
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

ANCA-associated vasculitis (AAV) is a group of disorders characterized by inflammation affecting small blood vessels. AAV includes microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA, formerly Wegener’s granulomatosis), and eosinophilic granulomatosis with polyangiitis (EGPA, formerly Churg-Strauss syndrome). AAV can be considered a complex disease; in fact, both genetic and environmental factors are involved in its susceptibility. To improve the understanding of the disease, the genetic component has been extensively studied by candidate-gene and genome-wide association studies. Most of the identified genetic AAV risk factors are common variants, whose functional importance still needs further investigation. In this chapter, we discuss the results of genetic studies in AAV. We also present novel approaches to identify the causal variants in complex susceptibility loci and disease mechanisms. Finally, we discuss the challenges in translating genomic data into clinical practice.

Keywords

Vasculitis Antineutrophil cytoplasmic antibody (ANCA) ANCA-associated vasculitis (AAV) Multifactorial disease Genome-wide association studies (GWASs) Immunochip Microscopic polyangiitis (MPA) Granulomatosis with polyangiitis (GPA) Eosinophilic granulomatosis with polyangiitis (EGPA) 

References

  1. 1.
    Jennette JC, Falk RJ, Hu P, Xiao H. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu Rev Pathol. 2013;8:139–60.CrossRefGoogle Scholar
  2. 2.
    Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994;37:187–92.CrossRefGoogle Scholar
  3. 3.
    Ntatsaki E, Watts RA, Scott DG. Epidemiology of ANCA-associated vasculitis. Rheum Dis Clin N Am. 2010;36(3):447–61.  https://doi.org/10.1016/j.rdc.2010.04.002. PubMed PMID: 20688243.CrossRefGoogle Scholar
  4. 4.
    Jayne D, Rasmussen N, Andrassy K, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med. 2003;349:36–44.CrossRefGoogle Scholar
  5. 5.
    Mahr A, Katsahian S, Varet H, et al. Revisiting the classification of clinical phenotypes of anti-neutrophil cytoplasmic antibody-associated vasculitis: a cluster analysis. Ann Rheum Dis. 2013;72:1003–10.CrossRefGoogle Scholar
  6. 6.
    Radice A, Sinico RA. Antineutrophil cytoplasmic antibodies (ANCA). Autoimmunity. 2005;38(1):93–103. Review. PubMed PMID: 15804710.CrossRefGoogle Scholar
  7. 7.
    Sable-Fourtassou R, Cohen P, Mahr A, et al. Antineutrophil cytoplasmic antibodies and the Churg-Strauss syndrome. Ann Intern Med. 2005;143:632–8.CrossRefGoogle Scholar
  8. 8.
    Chen M, Kallenberg CG. The environment, geoepidemiology and ANCA-associated vasculitides. Autoimmun Rev. 2010;9:A293–8.CrossRefGoogle Scholar
  9. 9.
    Tanna A, Salama AD, Brookes P, Pusey CD. Familial granulomatosis with polyangiitis: three cases of this rare disorder in one Indoasian family carrying an identical HLA DPB1 allele. BMJ Case Rep. 2012;2012.Google Scholar
  10. 10.
    Knight A, Sandin S, Askling J. Risks and relative risks of Wegener’s granulomatosis among close relatives of patients with the disease. Arthritis Rheum. 2008;58:302–7.CrossRefGoogle Scholar
  11. 11.
    Alberici F, Martorana D, Bonatti F, Gioffredi A, Lyons PA, Vaglio A. Genetics of ANCA-associated vasculitides: HLA and beyond. Clin Exp Rheumatol. 2014;32(Suppl 82):90–7.Google Scholar
  12. 12.
    Furuta S, Jayne DR. Antineutrophil cytoplasm antibody-associated vasculitis: recent developments. Kidney Int. 2013;84:244–9.CrossRefGoogle Scholar
  13. 13.
    Classen S, Staratschek-Jox A, Schultze JL. Use of genome-wide high-throughput technologies in biomarker development. Biomark Med. 2008;2(5):509–24.  https://doi.org/10.2217/17520363.2.5.509. PubMed PMID: 20477427.CrossRefPubMedGoogle Scholar
  14. 14.
    Hatemi G, Esatoglu SN, Yazici Y. Biomarkers in vasculitis. Curr Opin Rheumatol. 2018;30(1):30–5.  https://doi.org/10.1097/BOR.0000000000000447. PubMed PMID: 28937415.CrossRefPubMedGoogle Scholar
  15. 15.
    Bonatti F, Reina M, Neri TM, Martorana D. Genetic susceptibility to ANCA-associated vasculitis: state of the art. Front Immunol. 2014;5:577.  https://doi.org/10.3389/fimmu.2014.00577. eCollection 2014. Review. PubMed PMID: 25452756; PubMed Central PMCID: PMC4233908.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002;3(5):391–7.  https://doi.org/10.1038/nrg796. Review. PubMed PMID: 11988764.CrossRefPubMedGoogle Scholar
  17. 17.
    Dalca AV, Brudno M. Genome variation discovery with high-throughput sequencing data. Brief Bioinform. 2010;11(1):3–14.  https://doi.org/10.1093/bib/bbp058. PubMed PMID: 20053733.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet. 2005;6(2):109–18. Review. PubMed PMID: 15716907.CrossRefGoogle Scholar
  19. 19.
    Buzdugan L, Kalisch M, Navarro A, Schunk D, Fehr E, Bühlmann P. Assessing statistical significance in multivariable genome wide association analysis. Bioinformatics. 2016;32(13):1990–2000.  https://doi.org/10.1093/bioinformatics/btw128. PubMed PMID: 27153677; PubMed Central PMCID: PMC4920127.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien SJ. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11:724.  https://doi.org/10.1186/1471-2164-11-724. PubMed PMID: 21176216; PubMed Central PMCID: PMC3023815.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Stat Sci. 2009;24(4):561–73. PubMed PMID: 20454541; PubMed Central PMCID: PMC2865141.CrossRefGoogle Scholar
  22. 22.
    Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13(1):101.  https://doi.org/10.1186/ar3204. Review. PubMed PMID: 21345260; PubMed Central PMCID: PMC3157635.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, Gupta N, Sklar P, Sullivan PF, Moran JL, Hultman CM, Lichtenstein P, Magnusson P, Lehner T, Shugart YY, Price AL, de Bakker PI, Purcell SM, Sunyaev SR. Exome sequencing and the genetic basis of complex traits. Nat Genet. 2012;44(6):623–30.  https://doi.org/10.1038/ng.2303. PubMed PMID: 22641211; PubMed Central PMCID: PMC3727622.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Savage CO. Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis. Clin Exp Immunol. 2011;164(Suppl 1):23–6.  https://doi.org/10.1111/j.1365-2249.2011.04362.x. Review. PubMed PMID: 21447127; PubMed Central PMCID: PMC3095861.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Traherne JA. Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet. 2008;35(3):179–92.  https://doi.org/10.1111/j.1744-313X.2008.00765.x. Review. PubMed PMID: 18397301; PubMed Central PMCID: PMC2408657.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Evseeva I, Nicodemus KK, Bonilla C, Tonks S, Bodmer WF. Linkage disequilibrium and age of HLA region SNPs in relation to classic HLA gene alleles within Europe. Eur J Hum Genet. 2010;18(8):924–32.  https://doi.org/10.1038/ejhg.2010.32. PubMed PMID: 20354563; PubMed Central PMCID: PMC2987379.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jagiello P, Gencik M, Arning L, et al. New genomic region for Wegener’s granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet. 2004;114:468–77.CrossRefGoogle Scholar
  28. 28.
    Cao Y, Scmitz JL, Yang J, et al. DRB1*15 allele is a risk factor for PR3-ANCA disease in African Americans. Clin J Am Soc Nephrol. 2011;22:1161–7.CrossRefGoogle Scholar
  29. 29.
    Luo H, Chen M, Yang R, Xu PC, Zhao MH. The association of HLA-DRB1 alleles with antineutrophil cytoplasmic antibody-associated systemic vasculitis in Chinese patients. Hum Immunol. 2011;72:422–5.CrossRefGoogle Scholar
  30. 30.
    Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76:561–71.CrossRefGoogle Scholar
  31. 31.
    Chelala C, Duchatelet S, Joffret ML, Bergholdt R, Dubois-Laforgue D, Ghandil P, Pociot F, Caillat-Zucman S, Timsit J, Julier C. PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes. 2007;56(2):522–6. PubMed PMID: 17259401.CrossRefGoogle Scholar
  32. 32.
    Hinks A, Barton A, John S, Bruce I, Hawkins C, Griffiths CE, Donn R, Thomson W, Silman A, Worthington J. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum. 2005;52(6):1694–9. PubMed PMID: 15934099.CrossRefGoogle Scholar
  33. 33.
    Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, Kelly JA, Glenn SB, Guthridge JM, Scofield RH, Kimberly RP, Brown EE, Alarcón GS, Edberg JC, Kim JH, Choi J, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Boackle SA, Freedman BI, Tsao BP, Langefeld CD, Vyse TJ, Jacob CO, Pons-Estel B, Argentine Collaborative Group, Niewold TB, Moser Sivils KL, Merrill JT, Anaya JM, Gilkeson GS, Gaffney PM, Bae SC, Alarcón-Riquelme ME, BIOLUPUS and GENLES Networks, Harley JB, Criswell LA, James JA, Nath SK. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS One. 2013;8(8):e69404.  https://doi.org/10.1371/journal.pone.0069404. eCollection 2013. PubMed PMID: 23950893; PubMed Central PMCID: PMC3737240.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Maine CJ, Hamilton-Williams EE, Cheung J, et al. PTPN22 alters the development of regulatory T cells in the thymus. J Immunol. 2012;188:5267–75.CrossRefGoogle Scholar
  35. 35.
    JAGIELLO P, ARIES P, ARNING L, et al. The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum. 2005;52:4039–43.CrossRefGoogle Scholar
  36. 36.
    Carr EJ, Niederer HA, Williams J, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009;10:121.CrossRefGoogle Scholar
  37. 37.
    Martorana D, Maritati F, Malerba G, et al. PTPN22 R620W polymorphism in the ANCA-associated vasculitides. Rheumatology (Oxford). 2012;51:805–12.CrossRefGoogle Scholar
  38. 38.
    Noel PJ, Boise LH, Green JM, et al. CD28 costimulation prevents cell death during primary T cell activation. J Immunol. 1996;157:636–42.PubMedGoogle Scholar
  39. 39.
    Giscombe R, Wang X, Huang D, et al. Coding sequence 1 and promoter single nucleotide polymorphisms in the CTLA-4 gene in Wegener’s granulomatosis. J Rheumatol. 2002;29:950–3.PubMedGoogle Scholar
  40. 40.
    Langford CA, Monach PA, Specks U, et al. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener’s). Ann Rheum Dis. 2014;73:1376–9.CrossRefGoogle Scholar
  41. 41.
    Netea MG, Wijmenga C, O’Neill LA. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol. 2012;13(6):535–42.  https://doi.org/10.1038/ni.2284. Review. PubMed PMID: 22610250.CrossRefPubMedGoogle Scholar
  42. 42.
    Holle JU, Windmöller M, Lange C, Gross WL, Herlyn K, Csernok E. Toll-like receptor TLR2 and TLR9 ligation triggers neutrophil activation in granulomatosis with polyangiitis. Rheumatology (Oxford). 2013;52(7):1183–9.  https://doi.org/10.1093/rheumatology/kes415. PubMed PMID: 23407387.CrossRefGoogle Scholar
  43. 43.
    Husmann CA, Holle JU, Moosig F, et al. Genetics of toll like receptor 9 in ANCA associated vasculitides. Ann Rheum Dis. 2014;73:890–6.CrossRefGoogle Scholar
  44. 44.
    Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within anca-associated vasculitis. N Engl J Med. 2012;367:214–23.  https://doi.org/10.1056/NEJMoa1108735.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Xie G, Roshandel D, Sherva R, Monach PA, Lu EY, Kung T, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DBP1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65:2457–68.  https://doi.org/10.1002/art.38036.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Merkel PA, Xie G, Monach PA, Ji X, Ciavatta DJ, Byun J, Pinder BD, Zhao A, Zhang J, Tadesse Y, Qian D, Weirauch M, Nair R, Tsoi A, Pagnoux C, Carette S, Chung S, Cuthbertson D, Davis JC Jr, Dellaripa PF, Forbess L, Gewurz-Singer O, Hoffman GS, Khalidi N, Koening C, Langford CA, Mahr AD, McAlear C, Moreland L, Seo EP, Specks U, Spiera RF, Sreih A, St Clair EW, Stone JH, Ytterberg SR, Elder JT, Qu J, Ochi T, Hirano N, Edberg JC, Falk RJ, Amos CI, Siminovitch KA, Vasculitis Clinical Research Consortium. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 2017;69(5):1054–66.  https://doi.org/10.1002/art.40034. PubMed PMID: 28029757; PubMed Central PMCID: PMC5434905.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jiang L, Jiang D, Han Y, Shi X, Ren C. Association of HLA-DPB1 polymorphisms with rheumatoid arthritis: a systemic review and meta-analysis. Int J Surg. 2018;52:98–104.  https://doi.org/10.1016/j.ijsu.2018.01.046. Review. PubMed PMID: 29425827.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee JS, Park JK, Kim HJ, Lee HK, Song YW, Lee EB. Negatively-charged amino acids at the peptide-binding pocket of HLA-DPB1 alleles are associated with susceptibility to anti-topoisomerase I-positive systemic sclerosis. Hum Immunol. 2016;77(7):550–4.  https://doi.org/10.1016/j.humimm.2016.05.012. PubMed PMID: 27208855.CrossRefPubMedGoogle Scholar
  49. 49.
    Furukawa H, Oka S, Kawasaki A, Shimada K, Sugii S, Matsushita T, Hashimoto A, Komiya A, Fukui N, Kobayashi K, Osada A, Ihata A, Kondo Y, Nagai T, Setoguchi K, Okamoto A, Okamoto A, Chiba N, Suematsu E, Kono H, Katayama M, Hirohata S, Sumida T, Migita K, Hasegawa M, Fujimoto M, Sato S, Nagaoka S, Takehara K, Tohma S, Tsuchiya N. Human leukocyte antigen and systemic sclerosis in Japanese: the sign of the four independent protective alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. PLoS One. 2016;11(4):e0154255.  https://doi.org/10.1371/journal.pone.0154255. eCollection 2016. PubMed PMID: 27116456; PubMed Central PMCID: PMC4846066.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jung SH, Yim SH, Hu HJ, Lee KH, Lee JH, Sheen DH, Lim MK, Kim SY, Park SW, Kim SH, Han K, Kim TH, Shim SC, Chung YJ. Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheumatol. 2014;66(8):2103–12.  https://doi.org/10.1002/art.38650. PubMed PMID: 24692264.CrossRefPubMedGoogle Scholar
  51. 51.
    Fregonese L, Stolk J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis. 2008;19(3):16.  https://doi.org/10.1186/1750-1172-3-16. Review. PubMed PMID: 18565211; PubMed Central PMCID: PMC2441617.CrossRefGoogle Scholar
  52. 52.
    Mahr AD, Edberg JC, Stone JH, et al. Alpha(1)-antitrypsin deficiency-related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum. 2010;62:3760–7.CrossRefGoogle Scholar
  53. 53.
    Pagnoux C. Updates in ANCA-associated vasculitis. Eur J Rheumatol. 2016;3(3):122–33. Epub 2016 Jan 29. Review. PubMed PMID: 27733943; PubMed Central PMCID: PMC5058451.CrossRefGoogle Scholar
  54. 54.
    Schreiber A, Luft FC, Kettritz R. Membrane proteinase 3 expression and ANCA-induced neutrophil activation. Kidney Int. 2004;65(6):2172–83. PubMed PMID: 15149330.CrossRefGoogle Scholar
  55. 55.
    Campbell EJ, Campbell MA, Owen CA. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol. 2000;165(6):3366–74. PubMed PMID: 10975855.CrossRefGoogle Scholar
  56. 56.
    von Borstel A, Sanders JS, Rutgers A, Stegeman CA, Heeringa P, Abdulahad WH. Cellular immune regulation in the pathogenesis of ANCA-associated vasculitides. Autoimmun Rev. 2018;17(4):413–21.  https://doi.org/10.1016/j.autrev.2017.12.002. Epub 2018 Feb 9. Review. PubMed PMID: 29428808.CrossRefGoogle Scholar
  57. 57.
    Xie G, Roshandel D, Sherva R, Monach PA, Lu EY, Kung T, Carrington K, Zhang SS, Pulit SL, Ripke S, Carette S, Dellaripa PF, Edberg JC, Hoffman GS, Khalidi N, Langford CA, Mahr AD, St Clair EW, Seo P, Specks U, Spiera RF, Stone JH, Ytterberg SR, Raychaudhuri S, de Bakker PI, Farrer LA, Amos CI, Merkel PA, Siminovitch KA. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65(9):2457–68.  https://doi.org/10.1002/art.38036. PubMed PMID: 23740775; PubMed Central PMCID: PMC4471994.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Alberici F, Martorana D, Vaglio A. Genetic aspects of anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl 1):i37–45.  https://doi.org/10.1093/ndt/gfu386. Epub 2014 Dec 18. Review. PubMed PMID: 25523449.CrossRefPubMedGoogle Scholar
  59. 59.
    Ortiz-Fernández L, Carmona FD, López-Mejías R, González-Escribano MF, Lyons PA, Morgan AW, Sawalha AH, Smith KGC, González-Gay MA, Martín J, Spanish GCA Study Group, UK GCA Consortium, Turkish Takayasu Study Group, Vasculitis Clinical Research Consortium, IgAV Study Group, AAV Study group. Cross-phenotype analysis of Immunochip data identifies KDM4C as a relevant locus for the development of systemic vasculitis. Ann Rheum Dis. 2018;77(4):589–95.  https://doi.org/10.1136/annrheumdis-2017-212372. Epub 2018 Jan 27. Erratum in: Ann Rheum Dis. 2018 Jun;77(6):950. PubMed PMID: 29374629; PubMed Central PMCID: PMC5849568.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mahr A, Katsahian S, Varet H, Guillevin L, Hagen EC, Höglund P, Merkel PA, Pagnoux C, Rasmussen N, Westman K, Jayne DR. French Vasculitis Study Group (FVSG) and the European Vasculitis Society (EUVAS). Revisiting the classification of clinical phenotypes of anti-neutrophil cytoplasmic antibody-associated vasculitis: a cluster analysis. Ann Rheum Dis. 2013;72(6):1003–10.  https://doi.org/10.1136/annrheumdis-2012-201750. Epub 2012 Sep 8. PubMed PMID: 22962314.CrossRefPubMedGoogle Scholar
  61. 61.
    Groh M, Pagnoux C, Baldini C, Bel E, Bottero P, Cottin V, Dalhoff K, Dunogué B, Gross W, Holle J, Humbert M, Jayne D, Jennette JC, Lazor R, Mahr A, Merkel PA, Mouthon L, Sinico RA, Specks U, Vaglio A, Wechsler ME, Cordier JF, Guillevin L. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss) (EGPA) Consensus Task Force recommendations for evaluation and management. Eur J Intern Med. 2015;26(7):545–53.  https://doi.org/10.1016/j.ejim.2015.04.022. Epub 2015 May 9. PubMed PMID: 25971154.CrossRefPubMedGoogle Scholar
  62. 62.
    Gioffredi A, Maritati F, Oliva E, Buzio C. Eosinophilic granulomatosis with polyangiitis: an overview. Front Immunol. 2014;5:549.  https://doi.org/10.3389/fimmu.2014.00549. eCollection 2014. Review. PubMed PMID: 25404930; PubMed Central PMCID: PMC4217511.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vaglio A, Martorana D, Maggiore U, Grasselli C, Zanetti A, Pesci A, Garini G, Manganelli P, Bottero P, Tumiati B, Sinico RA, Savi M, Buzio C, Neri TM, Secondary and Primary Vasculitis Study Group. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 2007;56(9):3159–66. PubMed PMID: 17763415.CrossRefGoogle Scholar
  64. 64.
    Wieczorek S, Hellmich B, Gross WL, Epplen JT. Associations of Churg-Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al. Arthritis Rheum. 2008;58(1):329–30.  https://doi.org/10.1002/art.23209. PubMed PMID: 18163478.CrossRefPubMedGoogle Scholar
  65. 65.
    Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22–6.  https://doi.org/10.1016/j.ygeno.2008.08.012. Epub 2008 Oct 19. Review. PubMed PMID: 18822366; PubMed Central PMCID: PMC2631358.CrossRefPubMedGoogle Scholar
  66. 66.
    Mueller M, Barros P, Witherden AS, Roberts AL, Zhang Z, Schaschl H, Yu CY, Hurles ME, Schaffner C, Floto RA, Game L, Steinberg KM, Wilson RK, Graves TA, Eichler EE, Cook HT, Vyse TJ, Aitman TJ. Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. Am J Hum Genet. 2013;92(1):28–40.  https://doi.org/10.1016/j.ajhg.2012.11.013. Epub 2012 Dec 20. PubMed PMID: 23261299; PubMed Central PMCID: PMC3542466.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Martorana D, Bonatti F, Alberici F, Gioffredi A, Reina M, Urban ML, Maritati F, Adorni A, Radice A, Pizzolato S, Gregorini G, Jeannin G, Guida G, Boita M, Pesci A, Moroni G, Neri TM, Sinico RA, Vaglio A. Fcγ-receptor 3B (FCGR3B) copy number variations in patients with eosinophilic granulomatosis with polyangiitis. J Allergy Clin Immunol. 2016;137(5):1597–1599.e8.  https://doi.org/10.1016/j.jaci.2015.09.053. Epub 2015 Dec 9. PubMed PMID: 26684293.CrossRefPubMedGoogle Scholar
  68. 68.
    Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;63(2):437–59.  https://doi.org/10.1124/pr.110.003533. Epub 2011 Mar 24. Review. PubMed PMID: 21436344.CrossRefPubMedGoogle Scholar
  69. 69.
    Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987–95.  https://doi.org/10.1097/GIM.0b013e318238b38c. Review. PubMed PMID: 22095251; PubMed Central PMCID: PMC3290900.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bossaller L, Rothe A. Monoclonal antibody treatments for rheumatoid arthritis. Expert Opin Biol Ther. 2013;13(9):1257–72.  https://doi.org/10.1517/14712598.2013.811230. Epub 2013 Jun 21. Review. PubMed PMID: 23789825.CrossRefPubMedGoogle Scholar
  71. 71.
    Lutalo PM, D’Cruz DP. Biological drugs in ANCA-associated vasculitis. Int Immunopharmacol. 2015;27(2):209–12.  https://doi.org/10.1016/j.intimp.2015.04.023. Epub 2015 Apr 20. Review. PubMed PMID: 25907243.CrossRefPubMedGoogle Scholar
  72. 72.
    D’Arena G, Taylor RP, Cascavilla N, Lindorfer MA. Monoclonal antibodies: new therapeutic agents for autoimmune hemolytic anemia? Endocr Metab Immune Disord Drug Targets. 2008;8(1):62–8. Review. PubMed PMID: 18393924.CrossRefGoogle Scholar
  73. 73.
    Herold KC, Taylor L. Treatment of Type 1 diabetes with anti-CD3 monoclonal antibody: induction of immune regulation? Immunol Res. 2003;28(2):141–50. Review. PubMed PMID: 14610290.CrossRefGoogle Scholar
  74. 74.
    Le Dantec C, Alonso R, Fali T, Montero E, Devauchelle V, Saraux A, Pers JO, Renaudineau Y. Rationale for treating primary Sjögren’s syndrome patients with an anti-CD6 monoclonal antibody (Itolizumab). Immunol Res. 2013;56(2-3):341–7.  https://doi.org/10.1007/s12026-013-8423-x. PubMed PMID: 23576060.CrossRefPubMedGoogle Scholar
  75. 75.
    Taylor RP, Lindorfer MA. Drug insight: the mechanism of action of rituximab in autoimmune disease—the immune complex decoy hypothesis. Nat Clin Pract Rheumatol. 2007;3(2):86–95. Review. PubMed PMID: 17299446.CrossRefGoogle Scholar
  76. 76.
    Kasi PM, Tawbi HA, Oddis CV, Kulkarni HS. Clinical review: serious adverse events associated with the use of rituximab—a critical care perspective. Crit Care. 2012;16(4):231.  https://doi.org/10.1186/cc11304. Review. PubMed PMID: 22967460; PubMed Central PMCID: PMC3580676.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6(5 Pt 1):859–66. Review. PubMed PMID: 16611321.CrossRefGoogle Scholar
  78. 78.
    Kim SH, Jeong IH, Hyun JW, Joung A, Jo HJ, Hwang SH, Yun S, Joo J, Kim HJ. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol. 2015;72(9):989–95.  https://doi.org/10.1001/jamaneurol.2015.1276. PubMed PMID: 26167726.CrossRefPubMedGoogle Scholar
  79. 79.
    Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C, Kimby E, Frankel SR, Touroutoglou N, Turnbull B, Anderson KC, Maloney DG, Fox EA. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenström’s macroglobulinemia. J Clin Oncol. 2005;23(3):474–81. PubMed PMID: 15659493.CrossRefGoogle Scholar
  80. 80.
    Moroi R, Endo K, Kinouchi Y, Shiga H, Kakuta Y, Kuroha M, Kanazawa Y, Shimodaira Y, Horiuchi T, Takahashi S, Shimosegawa T. FCGR3A-158 polymorphism influences the biological response to infliximab in Crohn’s disease through affecting the ADCC activity. Immunogenetics. 2013;65(4):265–71.  https://doi.org/10.1007/s00251-013-0679-8. Epub 2013 Jan 29. Erratum in: Immunogenetics. 2015 Sep;67(9):545. PubMed PMID: 23358932.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Burkhardt B, Yavuz D, Zimmermann M, Schieferstein J, Kabickova E, Attarbaschi A, Lisfeld J, Reiter A, Makarova O, Worch J, Bonn BR, Damm-Welk C. Impact of Fc gamma-receptor polymorphisms on the response to rituximab treatment in children and adolescents with mature B cell lymphoma/leukemia. Ann Hematol. 2016;95(9):1503–12.  https://doi.org/10.1007/s00277-016-2731-x. Epub 2016 Jul 4. PubMed PMID: 27376362.CrossRefPubMedGoogle Scholar
  82. 82.
    Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7. Epub 2003 Sep 15. PubMed PMID: 12975461.CrossRefGoogle Scholar
  83. 83.
    Kenkre VP, Hong F, Cerhan JR, Lewis M, Sullivan L, Williams ME, Gascoyne RD, Horning SJ, Kahl BS. Fc gamma receptor 3A and 2A polymorphisms do not predict response to rituximab in follicular lymphoma. Clin Cancer Res. 2016;22(4):821–6.  https://doi.org/10.1158/1078-0432.CCR-15-1848. Epub 2015 Oct 28. PubMed PMID: 26510856; PubMed Central PMCID: PMC4755793.CrossRefPubMedGoogle Scholar
  84. 84.
    Morgan AW, Robinson JI, Barrett JH, Martin J, Walker A, Babbage SJ, Ollier WE, Gonzalez-Gay MA, Isaacs JD. Association of FCGR2A and FCGR2A-FCGR3A haplotypes with susceptibility to giant cell arteritis. Arthritis Res Ther. 2006;8(4):R109. PubMed PMID: 16846526; PubMed Central PMCID: PMC1779375.CrossRefGoogle Scholar
  85. 85.
    Sar A, Perizzolo M, Stewart D, Mansoor A, Difrancesco LM, Demetrick DJ. Mutation or polymorphism of the cd20 gene is not associated with the response to r-chop in diffuse large b cell lymphoma patients. Leuk Res. 2009;33:792–7.CrossRefGoogle Scholar
  86. 86.
    Robledo G, Marquez A, Davila-Fajardo CL, et al. Association of the fcgr3a-158f/v gene polymorphism with the response to rituximab treatment in spanish systemic autoimmune disease patients. DNA Cell Biol. 2012;31:1671–7.CrossRefGoogle Scholar
  87. 87.
    Alberici F, Smith RM, Fonseca M, et al. Association of a TNFSF13B (BAFF) regulatory region single nucleotide polymorphism with response to rituximab in antineutrophil cytoplasmic antibody-associated vasculitis. J Allergy Clin Immunol. 2017;139:1684–7.. e10.CrossRefGoogle Scholar
  88. 88.
    Geetha D, Specks U, Stone JH, Merkel PA, Seo P, Spiera R, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Fessler BJ, Ding L, Tchao NK, Ikle D, Jepson B, Brunetta P, Fervenza FC, Rituximab for ANCA-Associated Vasculitis Immune Tolerance Network Research Group. Rituximab versus cyclophosphamide for ANCA-associated vasculitis with renal involvement. J Am Soc Nephrol. 2015;26(4):976–85.  https://doi.org/10.1681/ASN.2014010046. Epub 2014 Nov 7. PubMed PMID: 25381429; PubMed Central PMCID: PMC4378104.CrossRefPubMedGoogle Scholar
  89. 89.
    Heijl C, Harper L, Flossmann O, Stücker I, Scott DG, Watts RA, Höglund P, Westman K, Mahr A, European Vasculitis Study Group (EUVAS). Incidence of malignancy in patients treated for antineutrophil cytoplasm antibody-associated vasculitis: follow-up data from European Vasculitis Study Group clinical trials. Ann Rheum Dis. 2011;70(8):1415–21.  https://doi.org/10.1136/ard.2010.145250. Epub 2011 May 25. Review. PubMed PMID: 21616914.CrossRefPubMedGoogle Scholar
  90. 90.
    Pinto N, Ludeman SM, Dolan ME. Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics. 2009;10(12):1897–903.  https://doi.org/10.2217/pgs.09.134. Review. PubMed PMID: 19958089; PubMed Central PMCID: PMC2820268.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Bonatti
    • 1
  • Alessia Adorni
    • 2
  • Antonio Percesepe
    • 1
    • 3
  • Augusto Vaglio
    • 4
    Email author
  • Davide Martorana
    • 3
  1. 1.Department of Medicine and SurgeryUniversity of ParmaParmaItaly
  2. 2.Hematology and Clinical ImmunologyDepartment of Medicine, University of PerugiaPerugiaItaly
  3. 3.Unit of Medical GeneticsUniversity Hospital of ParmaParmaItaly
  4. 4.Nephrology UnitMeyer Children’s HospitalFlorenceItaly

Personalised recommendations