Advertisement

Polymyositis/Dermatomyositis

  • Ana MárquezEmail author
  • Ernesto Trallero-Araguás
  • Albert Selva-O’Callaghan
Chapter
  • 274 Downloads
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

The idiopathic inflammatory myopathies (IIM) are a spectrum of rare and heterogeneous autoimmune conditions, mainly dermatomyositis (DM) and polymyositis (PM), characterized by muscle weakness. They show a very complex etiology in which both environmental and genetic factors seem to contribute to disease predisposition. During the last years, the development of large-scale genetic scans in different populations, including genome-wide association and Immunochip studies, has represented an important step forward to the understanding of the genetic basis of these disorders. These studies have confirmed the human leukocyte antigen (HLA) region as the main genetic risk factor for IIM and identified novel non-HLA susceptibility loci, highlighting the existence of a shared genetic component between DM/PM and other immune-mediated diseases. However, a large part of the genetic basis of IIM remains unidentified, and, therefore, future efforts will be necessary to gain insight into this missing heritability, as well as on the functional consequences of associated variants. In addition, the role of epigenetic modifications in the IIM pathogenesis is being currently explored. Integrating genetics and epigenetics may offer a powerful approach to better understand the molecular mechanisms involved in myositis.

Keywords

Idiopathic inflammatory myopathies Dermatomyositis Polymyositis Genome-wide association study Immunochip Human leukocyte antigen Single-nucleotide polymorphism Methylation MicroRNAs Long noncoding RNAs 

References

  1. 1.
    Rider LG, Miller FW. Deciphering the clinical presentations, pathogenesis, and treatment of the idiopathic inflammatory myopathies. JAMA. 2011;305(2):183–90.  https://doi.org/10.1001/jama.2010.1977.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ginn LR, Lin JP, Plotz PH, Bale SJ, Wilder RL, Mbauya A, et al. Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum. 1998;41(3):400–5.  https://doi.org/10.1002/1529-0131(199803)41:3<400::AID-ART4>3.0.CO;2-5.CrossRefPubMedGoogle Scholar
  3. 3.
    Niewold TB, Wu SC, Smith M, Morgan GA, Pachman LM. Familial aggregation of autoimmune disease in juvenile dermatomyositis. Pediatrics. 2011;127(5):e1239–46.  https://doi.org/10.1542/peds.2010-3022.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dalakas MC. Inflammatory muscle diseases. N Engl J Med. 2015;373(4):393–4.  https://doi.org/10.1056/NEJMc1506827.CrossRefPubMedGoogle Scholar
  5. 5.
    de Padilla CM, Reed AM. Dendritic cells and the immunopathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol. 2008;20(6):669–74.  https://doi.org/10.1097/BOR.0b013e3283157538.CrossRefPubMedGoogle Scholar
  6. 6.
    Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 2005;52(6):1824–35.  https://doi.org/10.1002/art.21103.CrossRefPubMedGoogle Scholar
  7. 7.
    Cappelletti C, Galbardi B, Kapetis D, Vattemi G, Guglielmi V, Tonin P, et al. Autophagy, inflammation and innate immunity in inflammatory myopathies. PLoS One. 2014;9(11):e111490.  https://doi.org/10.1371/journal.pone.0111490.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.  https://doi.org/10.1016/j.ajhg.2017.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13(1):101.  https://doi.org/10.1186/ar3204.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Miller FW, Chen W, O’Hanlon TP, Cooper RG, Vencovsky J, Rider LG, et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 2015;16(7):470–80.  https://doi.org/10.1038/gene.2015.28.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O’Hanlon TP, Carrick DM, Targoff IN, Arnett FC, Reveille JD, Carrington M, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine. 2006;85(2):111–27.  https://doi.org/10.1097/01.md.0000217525.82287.eb.CrossRefPubMedGoogle Scholar
  12. 12.
    Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis. 2016;75(8):1558–66.  https://doi.org/10.1136/annrheumdis-2015-208119.CrossRefPubMedGoogle Scholar
  13. 13.
    Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8.  https://doi.org/10.1038/sj.gene.6364059.CrossRefPubMedGoogle Scholar
  14. 14.
    Menconi F, Monti MC, Greenberg DA, Oashi T, Osman R, Davies TF, et al. Molecular amino acid signatures in the MHC class II peptide-binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proc Natl Acad Sci U S A. 2008;105(37):14034–9.  https://doi.org/10.1073/pnas.0806584105.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao X, Han L, Yuan L, Yang Y, Gou G, Sun H, et al. HLA class II alleles may influence susceptibility to adult dermatomyositis and polymyositis in a Han Chinese population. BMC Dermatol. 2014;14:9.  https://doi.org/10.1186/1471-5945-14-9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Furuya T, Hakoda M, Tsuchiya N, Kotake S, Ichikawa N, Nanke Y, et al. Immunogenetic features in 120 Japanese patients with idiopathic inflammatory myopathy. J Rheumatol. 2004;31(9):1768–74.PubMedGoogle Scholar
  17. 17.
    O’Hanlon TP, Rider LG, Mamyrova G, Targoff IN, Arnett FC, Reveille JD, et al. HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum. 2006;54(11):3670–81.  https://doi.org/10.1002/art.22205.CrossRefPubMedGoogle Scholar
  18. 18.
    Lintner KE, Patwardhan A, Rider LG, Abdul-Aziz R, Wu YL, Lundstrom E, et al. Gene copy-number variations (CNVs) of complement C4 and C4A deficiency in genetic risk and pathogenesis of juvenile dermatomyositis. Ann Rheum Dis. 2016;75(9):1599–606.  https://doi.org/10.1136/annrheumdis-2015-207762.CrossRefPubMedGoogle Scholar
  19. 19.
    Kochi Y, Kamatani Y, Kondo Y, Suzuki A, Kawakami E, Hiwa R, et al. Splicing variant of WDFY4 augments MDA5 signalling and the risk of clinically amyopathic dermatomyositis. Ann Rheum Dis. 2018;77(4):602–11.  https://doi.org/10.1136/annrheumdis-2017-212149.CrossRefPubMedGoogle Scholar
  20. 20.
    Miller FW, Cooper RG, Vencovsky J, Rider LG, Danko K, Wedderburn LR, et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum. 2013;65(12):3239–47.  https://doi.org/10.1002/art.38137.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang CE, Li Y, Wang ZX, Gao JP, Zhang XG, Zuo XB, et al. Variation at HLA-DPB1 is associated with dermatomyositis in Chinese population. J Dermatol. 2016;43(11):1307–13.  https://doi.org/10.1111/1346-8138.13397.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Q, Chen S, Li Y, Li P, Wu C, Wu Z, et al. Positive association of genetic variations in the phospholipase C-like 1 gene with dermatomyositis in Chinese Han. Immunol Res. 2016;64(1):204–12.  https://doi.org/10.1007/s12026-015-8738-x.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen S, Wu W, Li J, Wang Q, Li Y, Wu Z, et al. Single nucleotide polymorphisms in the FAM167A-BLK gene are associated with polymyositis/dermatomyositis in the Han Chinese population. Immunol Res. 2015;62(2):153–62.  https://doi.org/10.1007/s12026-015-8646-0.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sugiura T, Kawaguchi Y, Goto K, Hayashi Y, Gono T, Furuya T, et al. Association between a C8orf13-BLK polymorphism and polymyositis/dermatomyositis in the Japanese population: an additive effect with STAT4 on disease susceptibility. PLoS One. 2014;9(3):e90019.  https://doi.org/10.1371/journal.pone.0090019.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen S, Wang Q, Wu CY, Wu QJ, Li Y, Wu ZY, et al. A single-nucleotide polymorphism of CCL21 rs951005 T>C is associated with susceptibility of polymyositis and such patients with interstitial lung disease in a Chinese Han population. Clin Exp Rheumatol. 2015;33(5):639–46.PubMedGoogle Scholar
  26. 26.
    Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1–47.CrossRefGoogle Scholar
  27. 27.
    Nagaraju K, Lundberg IE. Polymyositis and dermatomyositis: pathophysiology. Rheum Dis Clin North Am. 2011;37(2):159–71., v.  https://doi.org/10.1016/j.rdc.2011.01.002.CrossRefPubMedGoogle Scholar
  28. 28.
    Fasano S, Gordon P, Hajji R, Loyo E, Isenberg DA. Rituximab in the treatment of inflammatory myopathies: a review. Rheumatology (Oxford). 2017;56(1):26–36.  https://doi.org/10.1093/rheumatology/kew146.CrossRefGoogle Scholar
  29. 29.
    Simpfendorfer KR, Olsson LM, Manjarrez Orduno N, Khalili H, Simeone AM, Katz MS, et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum Mol Genet. 2012;21(17):3918–25.  https://doi.org/10.1093/hmg/dds220.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol. 2016;99(6):869–82.  https://doi.org/10.1189/jlb.2MR0815-380R.CrossRefPubMedGoogle Scholar
  31. 31.
    Jani M, Massey J, Wedderburn LR, Vencovsky J, Danko K, Lundberg IE, et al. Genotyping of immune-related genetic variants identifies TYK2 as a novel associated locus for idiopathic inflammatory myopathies. Ann Rheum Dis. 2014;73(9):1750–2.  https://doi.org/10.1136/annrheumdis-2014-205440.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87.  https://doi.org/10.1111/j.1600-065X.2008.00754.x.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Autiero M, Cammarota G, Friedlein A, Zulauf M, Chiappetta G, Dragone V, et al. A 17-kDa CD4-binding glycoprotein present in human seminal plasma and in breast tumor cells. Eur J Immunol. 1995;25(5):1461–4.  https://doi.org/10.1002/eji.1830250550.CrossRefPubMedGoogle Scholar
  34. 34.
    Autiero M, Gaubin M, Mani JC, Castejon C, Martin M, el Marhomy S, et al. Surface plasmon resonance analysis of gp17, a natural CD4 ligand from human seminal plasma inhibiting human immunodeficiency virus type-1 gp120-mediated syncytium formation. Eur J Biochem. 1997;245(1):208–13.CrossRefGoogle Scholar
  35. 35.
    Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol. 2010;120(2–3):69–75.  https://doi.org/10.1016/j.jsbmb.2010.03.058.CrossRefGoogle Scholar
  36. 36.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.  https://doi.org/10.1038/nature12873.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 2010;6(2):e1000841.  https://doi.org/10.1371/journal.pgen.1000841.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chinoy H, Platt H, Lamb JA, Betteridge Z, Gunawardena H, Fertig N, et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 2008;58(10):3247–54.  https://doi.org/10.1002/art.23900.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol. 2014;32:83–119.  https://doi.org/10.1146/annurev-immunol-032713-120249.CrossRefPubMedGoogle Scholar
  40. 40.
    Sugiura T, Kawaguchi Y, Goto K, Hayashi Y, Tsuburaya R, Furuya T, et al. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann Rheum Dis. 2012;71(10):1646–50.  https://doi.org/10.1136/annrheumdis-2011-200839.CrossRefPubMedGoogle Scholar
  41. 41.
    Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev. 2004;202:139–56.  https://doi.org/10.1111/j.0105-2896.2004.00211.x.CrossRefPubMedGoogle Scholar
  42. 42.
    Chen S, Wang Q, Wu Z, Li Y, Li P, Sun F, et al. Genetic association study of TNFAIP3, IFIH1, IRF5 polymorphisms with polymyositis/dermatomyositis in Chinese Han population. PLoS One. 2014;9(10):e110044.  https://doi.org/10.1371/journal.pone.0110044.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chinoy H, Salway F, John S, Fertig N, Tait BD, Oddis CV, et al. Interferon-gamma and interleukin-4 gene polymorphisms in Caucasian idiopathic inflammatory myopathy patients in UK. Ann Rheum Dis. 2007;66(7):970–3.  https://doi.org/10.1136/ard.2006.068858.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mamyrova G, O’Hanlon TP, Sillers L, Malley K, James-Newton L, Parks CG, et al. Cytokine gene polymorphisms as risk and severity factors for juvenile dermatomyositis. Arthritis Rheum. 2008;58(12):3941–50.  https://doi.org/10.1002/art.24039.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Parkes JE, Rothwell S, Day PJ, McHugh NJ, Betteridge ZE, Cooper RG, et al. Systematic protein-protein interaction and pathway analyses in the idiopathic inflammatory myopathies. Arthritis Res Ther. 2016;18(1):156.  https://doi.org/10.1186/s13075-016-1061-7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266(1):72–92.  https://doi.org/10.1111/imr.12302.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hindi SM, Kumar A. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest. 2016;126(1):151–68.  https://doi.org/10.1172/JCI81655.CrossRefPubMedGoogle Scholar
  48. 48.
    Rayavarapu S, Coley W, Van der Meulen JH, Cakir E, Tappeta K, Kinder TB, et al. Activation of the ubiquitin proteasome pathway in a mouse model of inflammatory myopathy: a potential therapeutic target. Arthritis Rheum. 2013;65(12):3248–58.  https://doi.org/10.1002/art.38180.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li L, Wang Q, Yang F, Wu C, Chen S, Wen X, et al. Anti-MDA5 antibody as a potential diagnostic and prognostic biomarker in patients with dermatomyositis. Oncotarget. 2017;8(16):26552–64.  https://doi.org/10.18632/oncotarget.15716.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang M, Xie H, Shrestha S, Sredni S, Morgan GA, Pachman LM. Methylation alterations of WT1 and homeobox genes in inflamed muscle biopsy samples from patients with untreated juvenile dermatomyositis suggest self-renewal capacity. Arthritis Rheum. 2012;64(10):3478–85.  https://doi.org/10.1002/art.34573.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159–66.  https://doi.org/10.1016/j.tig.2008.01.007.CrossRefPubMedGoogle Scholar
  52. 52.
    Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A. 2007;104(43):17016–21.  https://doi.org/10.1073/pnas.0708115104.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol. 2014;5:578.  https://doi.org/10.3389/fimmu.2014.00578.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Georgantas RW, Streicher K, Greenberg SA, Greenlees LM, Zhu W, Brohawn PZ, et al. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol. 2014;66(4):1022–33.  https://doi.org/10.1002/art.38292.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu W, Streicher K, Shen N, Higgs BW, Morehouse C, Greenlees L, et al. Genomic signatures characterize leukocyte infiltration in myositis muscles. BMC Med Genomics. 2012;5:53.  https://doi.org/10.1186/1755-8794-5-53.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Peng QL, Zhang YM, Yang HB, Shu XM, Lu X, Wang GC. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis. Sci Rep. 2016;6:32818.  https://doi.org/10.1038/srep32818.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Márquez
    • 1
    Email author
  • Ernesto Trallero-Araguás
    • 2
  • Albert Selva-O’Callaghan
    • 3
  1. 1.Systemic Autoimmune Disease UnitInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
  2. 2.Department of RheumatologyVall d’Hebron General HospitalBarcelonaSpain
  3. 3.Internal Medicine DepartmentAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations