Skip to main content

Polymyositis/Dermatomyositis

  • Chapter
  • First Online:
Genetics of Rare Autoimmune Diseases

Abstract

The idiopathic inflammatory myopathies (IIM) are a spectrum of rare and heterogeneous autoimmune conditions, mainly dermatomyositis (DM) and polymyositis (PM), characterized by muscle weakness. They show a very complex etiology in which both environmental and genetic factors seem to contribute to disease predisposition. During the last years, the development of large-scale genetic scans in different populations, including genome-wide association and Immunochip studies, has represented an important step forward to the understanding of the genetic basis of these disorders. These studies have confirmed the human leukocyte antigen (HLA) region as the main genetic risk factor for IIM and identified novel non-HLA susceptibility loci, highlighting the existence of a shared genetic component between DM/PM and other immune-mediated diseases. However, a large part of the genetic basis of IIM remains unidentified, and, therefore, future efforts will be necessary to gain insight into this missing heritability, as well as on the functional consequences of associated variants. In addition, the role of epigenetic modifications in the IIM pathogenesis is being currently explored. Integrating genetics and epigenetics may offer a powerful approach to better understand the molecular mechanisms involved in myositis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rider LG, Miller FW. Deciphering the clinical presentations, pathogenesis, and treatment of the idiopathic inflammatory myopathies. JAMA. 2011;305(2):183–90. https://doi.org/10.1001/jama.2010.1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ginn LR, Lin JP, Plotz PH, Bale SJ, Wilder RL, Mbauya A, et al. Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum. 1998;41(3):400–5. https://doi.org/10.1002/1529-0131(199803)41:3<400::AID-ART4>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  3. Niewold TB, Wu SC, Smith M, Morgan GA, Pachman LM. Familial aggregation of autoimmune disease in juvenile dermatomyositis. Pediatrics. 2011;127(5):e1239–46. https://doi.org/10.1542/peds.2010-3022.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dalakas MC. Inflammatory muscle diseases. N Engl J Med. 2015;373(4):393–4. https://doi.org/10.1056/NEJMc1506827.

    Article  CAS  PubMed  Google Scholar 

  5. de Padilla CM, Reed AM. Dendritic cells and the immunopathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol. 2008;20(6):669–74. https://doi.org/10.1097/BOR.0b013e3283157538.

    Article  CAS  PubMed  Google Scholar 

  6. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 2005;52(6):1824–35. https://doi.org/10.1002/art.21103.

    Article  CAS  PubMed  Google Scholar 

  7. Cappelletti C, Galbardi B, Kapetis D, Vattemi G, Guglielmi V, Tonin P, et al. Autophagy, inflammation and innate immunity in inflammatory myopathies. PLoS One. 2014;9(11):e111490. https://doi.org/10.1371/journal.pone.0111490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22. https://doi.org/10.1016/j.ajhg.2017.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13(1):101. https://doi.org/10.1186/ar3204.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller FW, Chen W, O’Hanlon TP, Cooper RG, Vencovsky J, Rider LG, et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 2015;16(7):470–80. https://doi.org/10.1038/gene.2015.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Hanlon TP, Carrick DM, Targoff IN, Arnett FC, Reveille JD, Carrington M, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine. 2006;85(2):111–27. https://doi.org/10.1097/01.md.0000217525.82287.eb.

    Article  CAS  PubMed  Google Scholar 

  12. Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis. 2016;75(8):1558–66. https://doi.org/10.1136/annrheumdis-2015-208119.

    Article  CAS  PubMed  Google Scholar 

  13. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8. https://doi.org/10.1038/sj.gene.6364059.

    Article  CAS  PubMed  Google Scholar 

  14. Menconi F, Monti MC, Greenberg DA, Oashi T, Osman R, Davies TF, et al. Molecular amino acid signatures in the MHC class II peptide-binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proc Natl Acad Sci U S A. 2008;105(37):14034–9. https://doi.org/10.1073/pnas.0806584105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao X, Han L, Yuan L, Yang Y, Gou G, Sun H, et al. HLA class II alleles may influence susceptibility to adult dermatomyositis and polymyositis in a Han Chinese population. BMC Dermatol. 2014;14:9. https://doi.org/10.1186/1471-5945-14-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furuya T, Hakoda M, Tsuchiya N, Kotake S, Ichikawa N, Nanke Y, et al. Immunogenetic features in 120 Japanese patients with idiopathic inflammatory myopathy. J Rheumatol. 2004;31(9):1768–74.

    CAS  PubMed  Google Scholar 

  17. O’Hanlon TP, Rider LG, Mamyrova G, Targoff IN, Arnett FC, Reveille JD, et al. HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum. 2006;54(11):3670–81. https://doi.org/10.1002/art.22205.

    Article  CAS  PubMed  Google Scholar 

  18. Lintner KE, Patwardhan A, Rider LG, Abdul-Aziz R, Wu YL, Lundstrom E, et al. Gene copy-number variations (CNVs) of complement C4 and C4A deficiency in genetic risk and pathogenesis of juvenile dermatomyositis. Ann Rheum Dis. 2016;75(9):1599–606. https://doi.org/10.1136/annrheumdis-2015-207762.

    Article  CAS  PubMed  Google Scholar 

  19. Kochi Y, Kamatani Y, Kondo Y, Suzuki A, Kawakami E, Hiwa R, et al. Splicing variant of WDFY4 augments MDA5 signalling and the risk of clinically amyopathic dermatomyositis. Ann Rheum Dis. 2018;77(4):602–11. https://doi.org/10.1136/annrheumdis-2017-212149.

    Article  CAS  PubMed  Google Scholar 

  20. Miller FW, Cooper RG, Vencovsky J, Rider LG, Danko K, Wedderburn LR, et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum. 2013;65(12):3239–47. https://doi.org/10.1002/art.38137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang CE, Li Y, Wang ZX, Gao JP, Zhang XG, Zuo XB, et al. Variation at HLA-DPB1 is associated with dermatomyositis in Chinese population. J Dermatol. 2016;43(11):1307–13. https://doi.org/10.1111/1346-8138.13397.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Q, Chen S, Li Y, Li P, Wu C, Wu Z, et al. Positive association of genetic variations in the phospholipase C-like 1 gene with dermatomyositis in Chinese Han. Immunol Res. 2016;64(1):204–12. https://doi.org/10.1007/s12026-015-8738-x.

    Article  CAS  PubMed  Google Scholar 

  23. Chen S, Wu W, Li J, Wang Q, Li Y, Wu Z, et al. Single nucleotide polymorphisms in the FAM167A-BLK gene are associated with polymyositis/dermatomyositis in the Han Chinese population. Immunol Res. 2015;62(2):153–62. https://doi.org/10.1007/s12026-015-8646-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sugiura T, Kawaguchi Y, Goto K, Hayashi Y, Gono T, Furuya T, et al. Association between a C8orf13-BLK polymorphism and polymyositis/dermatomyositis in the Japanese population: an additive effect with STAT4 on disease susceptibility. PLoS One. 2014;9(3):e90019. https://doi.org/10.1371/journal.pone.0090019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen S, Wang Q, Wu CY, Wu QJ, Li Y, Wu ZY, et al. A single-nucleotide polymorphism of CCL21 rs951005 T>C is associated with susceptibility of polymyositis and such patients with interstitial lung disease in a Chinese Han population. Clin Exp Rheumatol. 2015;33(5):639–46.

    PubMed  Google Scholar 

  26. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1–47.

    Article  CAS  PubMed  Google Scholar 

  27. Nagaraju K, Lundberg IE. Polymyositis and dermatomyositis: pathophysiology. Rheum Dis Clin North Am. 2011;37(2):159–71., v. https://doi.org/10.1016/j.rdc.2011.01.002.

    Article  PubMed  Google Scholar 

  28. Fasano S, Gordon P, Hajji R, Loyo E, Isenberg DA. Rituximab in the treatment of inflammatory myopathies: a review. Rheumatology (Oxford). 2017;56(1):26–36. https://doi.org/10.1093/rheumatology/kew146.

    Article  CAS  Google Scholar 

  29. Simpfendorfer KR, Olsson LM, Manjarrez Orduno N, Khalili H, Simeone AM, Katz MS, et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum Mol Genet. 2012;21(17):3918–25. https://doi.org/10.1093/hmg/dds220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol. 2016;99(6):869–82. https://doi.org/10.1189/jlb.2MR0815-380R.

    Article  CAS  PubMed  Google Scholar 

  31. Jani M, Massey J, Wedderburn LR, Vencovsky J, Danko K, Lundberg IE, et al. Genotyping of immune-related genetic variants identifies TYK2 as a novel associated locus for idiopathic inflammatory myopathies. Ann Rheum Dis. 2014;73(9):1750–2. https://doi.org/10.1136/annrheumdis-2014-205440.

    Article  PubMed  Google Scholar 

  32. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87. https://doi.org/10.1111/j.1600-065X.2008.00754.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Autiero M, Cammarota G, Friedlein A, Zulauf M, Chiappetta G, Dragone V, et al. A 17-kDa CD4-binding glycoprotein present in human seminal plasma and in breast tumor cells. Eur J Immunol. 1995;25(5):1461–4. https://doi.org/10.1002/eji.1830250550.

    Article  CAS  PubMed  Google Scholar 

  34. Autiero M, Gaubin M, Mani JC, Castejon C, Martin M, el Marhomy S, et al. Surface plasmon resonance analysis of gp17, a natural CD4 ligand from human seminal plasma inhibiting human immunodeficiency virus type-1 gp120-mediated syncytium formation. Eur J Biochem. 1997;245(1):208–13.

    Article  CAS  PubMed  Google Scholar 

  35. Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol. 2010;120(2–3):69–75. https://doi.org/10.1016/j.jsbmb.2010.03.058.

    Article  CAS  PubMed  Google Scholar 

  36. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81. https://doi.org/10.1038/nature12873.

    Article  CAS  PubMed  Google Scholar 

  37. Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 2010;6(2):e1000841. https://doi.org/10.1371/journal.pgen.1000841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chinoy H, Platt H, Lamb JA, Betteridge Z, Gunawardena H, Fertig N, et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 2008;58(10):3247–54. https://doi.org/10.1002/art.23900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol. 2014;32:83–119. https://doi.org/10.1146/annurev-immunol-032713-120249.

    Article  CAS  PubMed  Google Scholar 

  40. Sugiura T, Kawaguchi Y, Goto K, Hayashi Y, Tsuburaya R, Furuya T, et al. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann Rheum Dis. 2012;71(10):1646–50. https://doi.org/10.1136/annrheumdis-2011-200839.

    Article  CAS  PubMed  Google Scholar 

  41. Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev. 2004;202:139–56. https://doi.org/10.1111/j.0105-2896.2004.00211.x.

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Wang Q, Wu Z, Li Y, Li P, Sun F, et al. Genetic association study of TNFAIP3, IFIH1, IRF5 polymorphisms with polymyositis/dermatomyositis in Chinese Han population. PLoS One. 2014;9(10):e110044. https://doi.org/10.1371/journal.pone.0110044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chinoy H, Salway F, John S, Fertig N, Tait BD, Oddis CV, et al. Interferon-gamma and interleukin-4 gene polymorphisms in Caucasian idiopathic inflammatory myopathy patients in UK. Ann Rheum Dis. 2007;66(7):970–3. https://doi.org/10.1136/ard.2006.068858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mamyrova G, O’Hanlon TP, Sillers L, Malley K, James-Newton L, Parks CG, et al. Cytokine gene polymorphisms as risk and severity factors for juvenile dermatomyositis. Arthritis Rheum. 2008;58(12):3941–50. https://doi.org/10.1002/art.24039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parkes JE, Rothwell S, Day PJ, McHugh NJ, Betteridge ZE, Cooper RG, et al. Systematic protein-protein interaction and pathway analyses in the idiopathic inflammatory myopathies. Arthritis Res Ther. 2016;18(1):156. https://doi.org/10.1186/s13075-016-1061-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266(1):72–92. https://doi.org/10.1111/imr.12302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hindi SM, Kumar A. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest. 2016;126(1):151–68. https://doi.org/10.1172/JCI81655.

    Article  PubMed  Google Scholar 

  48. Rayavarapu S, Coley W, Van der Meulen JH, Cakir E, Tappeta K, Kinder TB, et al. Activation of the ubiquitin proteasome pathway in a mouse model of inflammatory myopathy: a potential therapeutic target. Arthritis Rheum. 2013;65(12):3248–58. https://doi.org/10.1002/art.38180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li L, Wang Q, Yang F, Wu C, Chen S, Wen X, et al. Anti-MDA5 antibody as a potential diagnostic and prognostic biomarker in patients with dermatomyositis. Oncotarget. 2017;8(16):26552–64. https://doi.org/10.18632/oncotarget.15716.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang M, Xie H, Shrestha S, Sredni S, Morgan GA, Pachman LM. Methylation alterations of WT1 and homeobox genes in inflamed muscle biopsy samples from patients with untreated juvenile dermatomyositis suggest self-renewal capacity. Arthritis Rheum. 2012;64(10):3478–85. https://doi.org/10.1002/art.34573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159–66. https://doi.org/10.1016/j.tig.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  52. Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A. 2007;104(43):17016–21. https://doi.org/10.1073/pnas.0708115104.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol. 2014;5:578. https://doi.org/10.3389/fimmu.2014.00578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Georgantas RW, Streicher K, Greenberg SA, Greenlees LM, Zhu W, Brohawn PZ, et al. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol. 2014;66(4):1022–33. https://doi.org/10.1002/art.38292.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu W, Streicher K, Shen N, Higgs BW, Morehouse C, Greenlees L, et al. Genomic signatures characterize leukocyte infiltration in myositis muscles. BMC Med Genomics. 2012;5:53. https://doi.org/10.1186/1755-8794-5-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng QL, Zhang YM, Yang HB, Shu XM, Lu X, Wang GC. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis. Sci Rep. 2016;6:32818. https://doi.org/10.1038/srep32818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Márquez, A., Trallero-Araguás, E., Selva-O’Callaghan, A. (2019). Polymyositis/Dermatomyositis. In: Martín, J., Carmona, F. (eds) Genetics of Rare Autoimmune Diseases. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-03934-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03934-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03933-2

  • Online ISBN: 978-3-030-03934-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics