Behçet’s Disease

  • Lourdes Ortiz-Fernández
  • Maria Francisca González-Escribano
Part of the Rare Diseases of the Immune System book series (RDIS)


Behçet’s disease (BD) is a complex disease characterized by recurrent episodes of oral and genital ulcers and inflammatory lesions in a variable number of vessels throughout the body which lead to significant organ involvement. This condition, given its low prevalence, is classified as a rare systemic vasculitis. Although its etiology remains unclear, it is known that it is a multifactorial and immune-mediated disease in which imbalances of the immune response, triggered by environmental factors in genetically predisposed individuals, may be the underlying mechanisms of the disease. Throughout this chapter, we will review the current knowledge of the genetic component identified in this disorder. Firstly, we will focus on the HLA region which harbors the strongest known susceptibility factors for this disease. Additionally, we will review the available data in non-HLA regions, highlighting the confirmed risk loci and summarizing those that are only suggested. Finally, we will provide an overview of the main molecular pathways involved in the development of this pathology.


Behçet’s disease Vasculitides Susceptibility loci HLA I 


  1. 1.
    Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Criteria for diagnosis of Behçet’s disease. International Study Group for Behçet’s Disease. Lancet. 1990;335(8697):1078–80.Google Scholar
  3. 3.
    Sakane T, Takeno M, Suzuki N, Inaba G. Behçet’s disease. N Engl J Med. 1999;341(17):1284–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Yurdakul S, Yazici H. Behçet’s syndrome. Best Pract Res Clin Rheumatol. 2008;22(5):793–809.PubMedCrossRefGoogle Scholar
  5. 5.
    Hamzaoui K, Hamzaoui A, Hentati F, Kahan A, Ayed K, Chabbou A, et al. Phenotype and functional profile of T cells expressing gamma delta receptor from patients with active Behçet’s disease. J Rheumatol. 1994;21(12):2301–6.PubMedGoogle Scholar
  6. 6.
    Freysdottir J, Hussain L, Farmer I, Lau SH, Fortune F. Diversity of gammadelta T cells in patients with Behcet’s disease is indicative of polyclonal activation. Oral Dis. 2006;12(3):271–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Ben Ahmed M, Houman H, Miled M, Dellagi K, Louzir H. Involvement of chemokines and Th1 cytokines in the pathogenesis of mucocutaneous lesions of Behçet’s disease. Arthritis Rheum. 2004;50(7):2291–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Dalghous AM, Freysdottir J, Fortune F. Expression of cytokines, chemokines, and chemokine receptors in oral ulcers of patients with Behcet’s disease (BD) and recurrent aphthous stomatitis is Th1-associated, although Th2-association is also observed in patients with BD. Scand J Rheumatol. 2006;35(6):472–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrante A, Ciccia F, Principato A, Giardina AR, Impastato R, Peralta S, et al. A Th1 but not a Th17 response is present in the gastrointestinal involvement of Behçet’s disease. Clin Exp Rheumatol. 2010;28(4 Suppl 60):S27–30.PubMedGoogle Scholar
  10. 10.
    Chi W, Zhou S, Yang P, Chen L. CD4+ T cells from Behcet patients produce high levels of IL-17. Eye Sci. 2011;26(2):65–9.PubMedGoogle Scholar
  11. 11.
    Eksioglu-Demiralp E, Direskeneli H, Kibaroglu A, Yavuz S, Ergun T, Akoglu T. Neutrophil activation in Behçet’s disease. Clin Exp Rheumatol. 2001;19(5 Suppl 24):S19–24.PubMedGoogle Scholar
  12. 12.
    Kobayashi M, Ito M, Nakagawa A, Matsushita M, Nishikimi N, Sakurai T, et al. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behçet disease. Histopathology. 2000;36(4):362–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Carletto A, Pacor ML, Biasi D, Caramaschi P, Zeminian S, Bellavite P, et al. Changes of neutrophil migration without modification of in vitro metabolism and adhesion in Behçet’s disease. J Rheumatol. 1997;24(7):1332–6.PubMedGoogle Scholar
  14. 14.
    Efthimiou J, Addison IE, Johnson BV. In vivo leucocyte migration in Behçet’s syndrome. Ann Rheum Dis. 1989;48(3):206–10.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Neves FS, Carrasco S, Goldenstein-Schainberg C, Gonçalves CR, de Mello SB. Neutrophil hyperchemotaxis in Behçet’s disease: a possible role for monocytes orchestrating bacterial-induced innate immune responses. Clin Rheumatol. 2009;28(12):1403–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Kim J, Park JA, Lee EY, Lee YJ, Song YW, Lee EB. Imbalance of Th17 to Th1 cells in Behçet’s disease. Clin Exp Rheumatol. 2010;28(4 Suppl 60):S16–9.PubMedGoogle Scholar
  17. 17.
    Studd M, McCance DJ, Lehner T. Detection of HSV-1 DNA in patients with Behçet’s syndrome and in patients with recurrent oral ulcers by the polymerase chain reaction. J Med Microbiol. 1991;34(1):39–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Cho SB, Zheng Z, Ahn KJ, Choi MJ, Cho S, Kim DY, et al. Serum IgA reactivity against GroEL of Streptococcus sanguinis and human heterogeneous nuclear ribonucleoprotein A2/B1 in patients with Behçet disease. Br J Dermatol. 2013;168(5):977–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Koné-Paut I, Geisler I, Wechsler B, Ozen S, Ozdogan H, Rozenbaum M, et al. Familial aggregation in Behçet’s disease: high frequency in siblings and parents of pediatric probands. J Pediatr. 1999;135(1):89–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Gül A, Inanç M, Ocal L, Aral O, Koniçe M. Familial aggregation of Behçet’s disease in Turkey. Ann Rheum Dis. 2000;59(8):622–5.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fietta P. Behçet’s disease: familial clustering and immunogenetics. Clin Exp Rheumatol. 2005;23(4 Suppl 38):S96–105.PubMedGoogle Scholar
  22. 22.
    Yilmaz S, Cimen KA. Familial Behçet’s disease. Rheumatol Int. 2010;30(8):1107–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Masatlioglu S, Seyahi E, Tahir Turanli E, Fresko I, Gogus F, Senates E, et al. A twin study in Behçet’s syndrome. Clin Exp Rheumatol. 2010;28(4 Suppl 60):S62–6.PubMedGoogle Scholar
  24. 24.
    de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A. HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum. 2009;61(10):1287–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohno S, Aoki K, Sugiura S, Nakayama E, Itakura K, Aizawa M. Letter: HL-A5 and Behçet’s disease. Lancet. 1973;2(7842):1383–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Montes-Cano MA, Conde-Jaldón M, García-Lozano JR, Ortiz-Fernández L, Ortego-Centeno N, Castillo-Palma MJ, et al. HLA and non-HLA genes in Behçet’s disease: a multicentric study in the Spanish population. Arthritis Res Ther. 2013;15(5):R145.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gül A, Uyar FA, Inanç M, Ocal L, Barrett JH, Aral O, et al. A weak association of HLA-B*2702 with Behçet’s disease. Genes Immun. 2002;3(6):368–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Takeuchi M, Kastner DL, Remmers EF. The immunogenetics of Behçet’s disease: a comprehensive review. J Autoimmun. 2015;64:137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Meguro A, Inoko H, Ota M, Katsuyama Y, Oka A, Okada E, et al. Genetics of Behçet disease inside and outside the MHC. Ann Rheum Dis. 2010;69(4):747–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang EH, Kim JY, Takeuchi F, Kim JW, Shin K, Lee EY, et al. Associations between the HLA-A polymorphism and the clinical manifestations of Behcet’s disease. Arthritis Res Ther. 2011;13(2):R49.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yabuki K, Mizuki N, Ota M, Katsuyama Y, Palimeris G, Stavropoulos C, et al. Association of MICA gene and HLA-B*5101 with Behçet’s disease in Greece. Invest Ophthalmol Vis Sci. 1999;40(9):1921–6.PubMedGoogle Scholar
  32. 32.
    Mizuki N, Ota M, Katsuyama Y, Yabuki K, Ando H, Goto K, et al. Association analysis between the MIC-A and HLA-B alleles in Japanese patients with Behçet’s disease. Arthritis Rheum. 1999;42(9):1961–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Ota M, Mizuki N, Katsuyama Y, Tamiya G, Shiina T, Oka A, et al. The critical region for Behçet disease in the human major histocompatibility complex is reduced to a 46-kb segment centromeric of HLA-B, by association analysis using refined microsatellite mapping. Am J Hum Genet. 1999;64(5):1406–10.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    González-Escribano MF, Rodríguez MR, Aguilar F, Alvarez A, Sanchez-Roman J, Núñez-Roldán A. Lack of association of MICA transmembrane region polymorphism and Behçet’s disease in Spain. Tissue Antigens. 1999;54(3):278–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Mizuki N, Ota M, Yabuki K, Katsuyama Y, Ando H, Palimeris GD, et al. Localization of the pathogenic gene of Behçet’s disease by microsatellite analysis of three different populations. Invest Ophthalmol Vis Sci. 2000;41(12):3702–8.PubMedGoogle Scholar
  36. 36.
    Salvarani C, Boiardi L, Mantovani V, Olivieri I, Ciancio G, Cantini F, et al. Association of MICA alleles and HLA-B51 in Italian patients with Behçet’s disease. J Rheumatol. 2001;28(8):1867–70.PubMedGoogle Scholar
  37. 37.
    Park SH, Park KS, Seo YI, Min DJ, Kim WU, Kim TG, et al. Association of MICA polymorphism with HLA-B51 and disease severity in Korean patients with Behcet’s disease. J Korean Med Sci. 2002;17(3):366–70.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cohen R, Metzger S, Nahir M, Chajek-Shaul T. Association of the MIC-A gene and HLA-B51 with Behçet’s disease in Arabs and non-Ashkenazi Jews in Israel. Ann Rheum Dis. 2002;61(2):157–60.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84(2):210–23.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8(6):e64683.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hughes T, Coit P, Adler A, Yilmaz V, Aksu K, Düzgün N, et al. Identification of multiple independent susceptibility loci in the HLA region in Behçet’s disease. Nat Genet. 2013;45(3):319–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Ombrello MJ, Kirino Y, de Bakker PI, Gül A, Kastner DL, Remmers EF. Behçet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 2014;111(24):8867–72.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ortiz-Fernández L, Carmona FD, Montes-Cano MA, García-Lozano JR, Conde-Jaldón M, Ortego-Centeno N, et al. Genetic analysis with the Immunochip Platform in Behçet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One. 2016;11(8):e0161305.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Takeuchi M, Mizuki N, Meguro A, Ombrello MJ, Kirino Y, Satorius C, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet’s disease susceptibility. Nat Genet. 2017;49(3):438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bettencourt A, Pereira C, Carvalho L, Carvalho C, Patto JV, Bastos M, et al. New insights of HLA class I association to Behçet’s disease in Portuguese patients. Tissue Antigens. 2008;72(4):379–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Sanz L, González-Escribano F, de Pablo R, Núñez-Roldán A, Kreisler M, Vilches C. HLA-Cw*1602: a new susceptibility marker of Behçet’s disease in southern Spain. Tissue Antigens. 1998;51(1):111–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Yazici H, Fresko I, Yurdakul S. Behçet’s syndrome: disease manifestations, management, and advances in treatment. Nat Clin Pract Rheumatol. 2007;3(3):148–55.PubMedCrossRefGoogle Scholar
  48. 48.
    Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, Kawagoe T, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat Genet. 2010;42(8):703–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet. 2010;42(8):698–702.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Carapito R, Shahram F, Michel S, Le Gentil M, Radosavljevic M, Meguro A, et al. On the genetics of the Silk Route: association analysis of HLA, IL10, and IL23R-IL12RB2 regions with Behçet’s disease in an Iranian population. Immunogenetics. 2015;67(5–6):289–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Xavier JM, Shahram F, Davatchi F, Rosa A, Crespo J, Abdollahi BS, et al. Association study of IL10 and IL23R-IL12RB2 in Iranian patients with Behçet’s disease. Arthritis Rheum. 2012;64(8):2761–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Jiang Z, Yang P, Hou S, Du L, Xie L, Zhou H, et al. IL-23R gene confers susceptibility to Behcet’s disease in a Chinese Han population. Ann Rheum Dis. 2010;69(7):1325–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim ES, Kim SW, Moon CM, Park JJ, Kim TI, Kim WH, et al. Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behcet’s disease in Korean population. Life Sci. 2012;90(19–20):740–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Yalçin B, Atakan N, Dogan S. Association of interleukin-23 receptor gene polymorphism with Behçet disease. Clin Exp Dermatol. 2014;39(8):881–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Sousa I, Shahram F, Francisco D, Davatchi F, Abdollahi BS, Ghaderibarmi F, et al. Brief report: association of CCR1, KLRC4, IL12A-AS1, STAT4, and ERAP1 with Behçet’s disease in Iranians. Arthritis Rheumatol. 2015;67(10):2742–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Kirino Y, Zhou Q, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behçet disease. Proc Natl Acad Sci U S A. 2013;110(20):8134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80(2):273–90.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rueda B, Orozco G, Raya E, Fernandez-Sueiro JL, Mulero J, Blanco FJ, et al. The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2008;67(10):1451–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest. 2006;116(5):1218–22.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wu Z, Zheng W, Xu J, Sun F, Chen H, Li P, et al. IL10 polymorphisms associated with Behçet’s disease in Chinese Han. Hum Immunol. 2014;75(3):271–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Kang EH, Choi JY, Lee YJ, Lee EY, Lee EB, Song YW. Single nucleotide polymorphisms in IL-10-mediated signalling pathways in Korean patients with Behçet’s disease. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S27–32.PubMedGoogle Scholar
  63. 63.
    Wallace GR, Kondeatis E, Vaughan RW, Verity DH, Chen Y, Fortune F, et al. IL-10 genotype analysis in patients with Behçet’s disease. Hum Immunol. 2007;68(2):122–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Temple SE, Lim E, Cheong KY, Almeida CA, Price P, Ardlie KG, et al. Alleles carried at positions -819 and -592 of the IL10 promoter affect transcription following stimulation of peripheral blood cells with Streptococcus pneumoniae. Immunogenetics. 2003;55(9):629–32.PubMedCrossRefGoogle Scholar
  65. 65.
    Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997;24(1):1–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.PubMedCrossRefGoogle Scholar
  67. 67.
    Chang JT, Shevach EM, Segal BM. Regulation of interleukin (IL)-12 receptor beta2 subunit expression by endogenous IL-12: a critical step in the differentiation of pathogenic autoreactive T cells. J Exp Med. 1999;189(6):969–78.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kappen JH, Medina-Gomez C, van Hagen PM, Stolk L, Estrada K, Rivadeneira F, et al. Genome-wide association study in an admixed case series reveals IL12A as a new candidate in Behçet disease. PLoS One. 2015;10(3):e0119085.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45(2):202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–86.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Korman BD, Alba MI, Le JM, Alevizos I, Smith JA, Nikolov NP, et al. Variant form of STAT4 is associated with primary Sjögren’s syndrome. Genes Immun. 2008;9(3):267–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Hou S, Yang Z, Du L, Jiang Z, Shu Q, Chen Y, et al. Identification of a susceptibility locus in STAT4 for Behçet’s disease in Han Chinese in a genome-wide association study. Arthritis Rheum. 2012;64(12):4104–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Morinobu A, Gadina M, Strober W, Visconti R, Fornace A, Montagna C, et al. STAT4 serine phosphorylation is critical for IL-12-induced IFN-gamma production but not for cell proliferation. Proc Natl Acad Sci U S A. 2002;99(19):12281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Abelson AK, Delgado-Vega AM, Kozyrev SV, Sánchez E, Velázquez-Cruz R, Eriksson N, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis. 2009;68(11):1746–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Conde-Jaldón M, Montes-Cano MA, García-Lozano JR, Ortiz-Fernández L, Ortego-Centeno N, González-León R, et al. Epistatic interaction of ERAP1 and HLA-B in Behçet disease: a replication study in the Spanish population. PLoS One. 2014;9(7):e102100.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Takeuchi M, Ombrello MJ, Kirino Y, Erer B, Tugal-Tutkun I, Seyahi E, et al. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behçet’s disease in HLA-B*51 carriers. Ann Rheum Dis. 2016;75(12):2208–11.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–90.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010;42(11):1005–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL, et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol. 2002;3(12):1169–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Xavier JM, Shahram F, Sousa I, Davatchi F, Matos M, Abdollahi BS, et al. FUT2: filling the gap between genes and environment in Behçet’s disease? Ann Rheum Dis. 2015;74(3):618–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Ferrer-Admetlla A, Sikora M, Laayouni H, Esteve A, Roubinet F, Blancher A, et al. A natural history of FUT2 polymorphism in humans. Mol Biol Evol. 2009;26(9):1993–2003.CrossRefGoogle Scholar
  83. 83.
    Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hu DY, Shao XX, Xu CL, Xia SL, Yu LQ, Jiang LJ, et al. Associations of FUT2 and FUT3 gene polymorphisms with Crohn’s disease in Chinese patients. J Gastroenterol Hepatol. 2014;29(10):1778–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Smyth DJ, Cooper JD, Howson JM, Clarke P, Downes K, Mistry T, et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes. 2011;60(11):3081–4.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med. 2003;9(5):548–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278(16):14112–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Wacklin P, Mäkivuokko H, Alakulppi N, Nikkilä J, Tenkanen H, Räbinä J, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of bifidobacteria in the human intestine. PLoS One. 2011;6(5):e20113.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A. 2011;108(47):19030–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hayashi T, Imai K, Morishita Y, Hayashi I, Kusunoki Y, Nakachi K. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res. 2006;66(1):563–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Hou S, Xiao X, Li F, Jiang Z, Kijlstra A, Yang P. Two-stage association study in Chinese Han identifies two independent associations in CCR1/CCR3 locus as candidate for Behçet’s disease susceptibility. Hum Genet. 2012;131(12):1841–50.PubMedCrossRefGoogle Scholar
  92. 92.
    Marzio PD, Sherry B, Thomas EK, Franchin G, Schmidtmayerova H, Bukrinsky M. beta-Chemokine production in CD40L-stimulated monocyte-derived macrophages requires activation of MAPK signaling pathways. Cytokine. 2003;23(3):53–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Fei Y, Webb R, Cobb BL, Direskeneli H, Saruhan-Direskeneli G, Sawalha AH. Identification of novel genetic susceptibility loci for Behçet’s disease using a genome-wide association study. Arthritis Res Ther. 2009;11(3):R66.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lee YJ, Horie Y, Wallace GR, Choi YS, Park JA, Choi JY, et al. Genome-wide association study identifies GIMAP as a novel susceptibility locus for Behcet’s disease. Ann Rheum Dis. 2013;72(9):1510–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Ortiz-Fernández L, Conde-Jaldón M, García-Lozano JR, Montes-Cano MA, Ortego-Centeno N, Castillo-Palma MJ, et al. GIMAP and Behçet disease: no association in the European population. Ann Rheum Dis. 2014;73(7):1433–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Burillo-Sanz S, Montes-Cano MA, García-Lozano JR, Ortiz-Fernández L, Ortego-Centeno N, García-Hernández FJ, et al. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: a next generation sequencing approach. Sci Rep. 2017;7(1):8453.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol. 2007;25:221–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Carmona FD, González-Gay MA, Martín J. Genetic component of giant cell arteritis. Rheumatology (Oxford). 2014;53(1):6–18.CrossRefGoogle Scholar
  99. 99.
    Eyre S, Orozco G, Worthington J. The genetics revolution in rheumatology: large scale genomic arrays and genetic mapping. Nat Rev Rheumatol. 2017;13(7):421–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Ortiz-Fernández L, Carmona FD, López-Mejías R, González-Escribano MF, Lyons PA, Morgan AW, et al. Cross-phenotype analysis of Immunochip data identifies. Ann Rheum Dis. 2018;77(4):589–95.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Carmona FD, Coit P, Saruhan-Direskeneli G, Hernández-Rodríguez J, Cid MC, Solans R, et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep. 2017;7:43953.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Coit P, Direskeneli H, Sawalha AH. An update on the role of epigenetics in systemic vasculitis. Curr Opin Rheumatol. 2018;30(1):4–15.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature. 2002;419(6906):480–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lourdes Ortiz-Fernández
    • 1
  • Maria Francisca González-Escribano
    • 2
  1. 1.Instituto de Parasitología y Biomedicina ‘López-Neyra’IPBLN-CSIC, Parque Tecnológico Ciencias de la SaludGranadaSpain
  2. 2.Servicio de InmunologíaHospital Universitario Virgen del Rocío (IBiS, CSIC, US)SevillaSpain

Personalised recommendations