Advertisement

Systemic Sclerosis

  • Elena López-IsacEmail author
  • Marialbert Acosta-Herrera
  • Javier Martín
Chapter
  • 281 Downloads
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Systemic sclerosis (SSc) is a complex autoimmune disease (AD) characterized by vascular damage, immune imbalance, and fibrosis of the skin and internal organs. The disease represents one of the autoimmune rheumatic diseases with highest mortality, and its low prevalence classifies the disorder as a rare disease. Although the etiology remains unknown, it is thought to result from a complex interaction between multiple genetic risk factors, each of them with a modest effect in the disease susceptibility, and environmental features, triggering the onset of the disease and affecting its severity and progression. In this chapter, we will review the current knowledge of the genetic component described for the disease, offering an overview of the most relevant studies performed in the field of SSc genetics. Additionally, the chapter provides an insight into the role of the SSc susceptibility loci in the pathogenic mechanisms that characterize the disorder. Finally, we will explore the functional characterization of the SSc-associated variants and discuss about future directions.

Keywords

Systemic sclerosis Susceptibility loci Major histocompatibility complex class II Type I interferon Innate and adaptive immune responses Apoptosis Autophagy and fibrosis 

References

  1. 1.
    Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Katsumoto TR, Whitfield ML, Connolly MK. The pathogenesis of systemic sclerosis. Annu Rev Pathol. 2011;6:509–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis. 2007;66(7):940–4.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Amur S, Parekh A, Mummaneni P. Sex differences and genomics in autoimmune diseases. J Autoimmun. 2012;38(2–3):J254–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Elhai M, Avouac J, Walker UA, Matucci-Cerinic M, Riemekasten G, Airo P, et al. A gender gap in primary and secondary heart dysfunctions in systemic sclerosis: a EUSTAR prospective study. Ann Rheum Dis. 2016;75(1):163–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Ranque B, Mouthon L. Geoepidemiology of systemic sclerosis. Autoimmun Rev. 2010;9(5):A311–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Reveille JD. Ethnicity and race and systemic sclerosis: how it affects susceptibility, severity, antibody genetics, and clinical manifestations. Curr Rheumatol Rep. 2003;5(2):160–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Reveille JD, Fischbach M, McNearney T, Friedman AW, Aguilar MB, Lisse J, et al. Systemic sclerosis in 3 US ethnic groups: a comparison of clinical, sociodemographic, serologic, and immunogenetic determinants. Semin Arthritis Rheum. 2001;30(5):332–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Trojanowska M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nat Rev Rheumatol. 2010;6(8):453–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117(3):557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002.PubMedCrossRefGoogle Scholar
  13. 13.
    Shah AA, Rosen A, Hummers L, Wigley F, Casciola-Rosen L. Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase I/III antibodies. Arthritis Rheum. 2010;62(9):2787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Airo P, Ceribelli A, Cavazzana I, Taraborelli M, Zingarelli S, Franceschini F. Malignancies in Italian patients with systemic sclerosis positive for anti-RNA polymerase III antibodies. J Rheumatol. 2011;38(7):1329–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV. Oxidative stress and the pathogenesis of scleroderma: the Murrell’s hypothesis revisited. Semin Immunopathol. 2008;30(3):329–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Servettaz A, Goulvestre C, Kavian N, Nicco C, Guilpain P, Chereau C, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J Immunol. 2009;182(9):5855–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, et al. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001;44(11):2653–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD. Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum. 2001;44(6):1359–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Feghali-Bostwick C, Medsger TA Jr, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 2003;48(7):1956–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Assassi S, Arnett FC, Reveille JD, Gourh P, Mayes MD. Clinical, immunologic, and genetic features of familial systemic sclerosis. Arthritis Rheum. 2007;56(6):2031–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17(R2):R122–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bossini-Castillo L, Lopez-Isac E, Martin J. Immunogenetics of systemic sclerosis: defining heritability, functional variants and shared-autoimmunity pathways. J Autoimmun. 2015;64:53–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R, et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet. 2010;42(5):426–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dieude P, Boileau C, Guedj M, Avouac J, Ruiz B, Hachulla E, et al. Independent replication establishes the CD247 gene as a genetic systemic sclerosis susceptibility factor. Ann Rheum Dis. 2011;70(9):1695–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P, et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 2011;7(7):e1002091.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bossini-Castillo L, Martin JE, Broen J, Simeon CP, Beretta L, Gorlova OY, et al. Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study. Ann Rheum Dis. 2013;72(4):602–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou X, Lee JE, Arnett FC, Xiong M, Park MY, Yoo YK, et al. HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum. 2009;60(12):3807–14.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Terao C, Kawaguchi T, Dieude P, Varga J, Kuwana M, Hudson M, et al. Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann Rheum Dis. 2017;76(6):1150–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bossini-Castillo L, Martin JE, Broen J, Gorlova O, Simeon CP, Beretta L, et al. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum Mol Genet. 2012;21(4):926–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC, et al. Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Hum Mol Genet. 2012;21(12):2825–35.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lopez-Isac E, Bossini-Castillo L, Simeon CP, Egurbide MV, Alegre-Sancho JJ, Callejas JL, et al. A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility. Arthritis Res Ther. 2014;16(1):R6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14(9):661–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV, et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet. 2014;94(1):47–61.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zochling J, Newell F, Charlesworth JC, Leo P, Stankovich J, Cortes A, et al. An Immunochip-based interrogation of scleroderma susceptibility variants identifies a novel association at DNASE1L3. Arthritis Res Ther. 2014;16(5):438.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294–305.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK, et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis. 2010;69(5):822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M, et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 2011;7(7):e1002178.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Martin JE, Bossini-Castillo L, Martin J. Unraveling the genetic component of systemic sclerosis. Hum Genet. 2012;131(7):1023–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Gilchrist FC, Bunn C, Foley PJ, Lympany PA, Black CM, Welsh KI, et al. Class II HLA associations with autoantibodies in scleroderma: a highly significant role for HLA-DP. Genes Immun. 2001;2(2):76–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.CrossRefGoogle Scholar
  48. 48.
    Abraham DJ, Krieg T, Distler J, Distler O. Overview of pathogenesis of systemic sclerosis. Rheumatology (Oxford). 2009;48(Suppl 3):iii3–7.Google Scholar
  49. 49.
    Gu YS, Kong J, Cheema GS, Keen CL, Wick G, Gershwin ME. The immunobiology of systemic sclerosis. Semin Arthritis Rheum. 2008;38(2):132–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Matucci-Cerinic M, Kahaleh B, Wigley FM. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 2013;65(8):1953–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Dieude P, Guedj M, Wipff J, Ruiz B, Riemekasten G, Matucci-Cerinic M, et al. Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis. 2010;69(11):1958–64.PubMedCrossRefGoogle Scholar
  52. 52.
    Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35(1):22–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Wu M, Assassi S. The role of type 1 interferon in systemic sclerosis. Front Immunol. 2013;4:266.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Hikami K, et al. Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum. 2009;60(6):1845–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Dieude P, Guedj M, Wipff J, Avouac J, Fajardy I, Diot E, et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum. 2009;60(1):225–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Dieude P, Dawidowicz K, Guedj M, Legrain Y, Wipff J, Hachulla E, et al. Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J Rheumatol. 2010;37(5):987–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Carmona FD, Martin JE, Beretta L, Simeon CP, Carreira PE, Callejas JL, et al. The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis. PLoS One. 2013;8(1):e54419.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM, et al. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet. 2015;24(2):582–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Arismendi M, Giraud M, Ruzehaji N, Dieude P, Koumakis E, Ruiz B, et al. Identification of NF-kappaB and PLCL2 as new susceptibility genes and highlights on a potential role of IRF8 through interferon signature modulation in systemic sclerosis. Arthritis Res Ther. 2015;17:71.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Carmona FD, Gutala R, Simeon CP, Carreira P, Ortego-Centeno N, Vicente-Rabaneda E, et al. Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann Rheum Dis. 2012;71(1):114–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Lopez-Isac E, Martin JE, Assassi S, Simeon CP, Carreira P, Ortego-Centeno N, et al. Brief report: IRF4 newly identified as a common susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-disease meta-analysis of genome-wide association studies. Arthritis Rheumatol. 2016;68(9):2338–44.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006;6(9):644–58.PubMedCrossRefGoogle Scholar
  63. 63.
    Sharif R, Mayes MD, Tan FK, Gorlova OY, Hummers LK, Shah AA, et al. IRF5 polymorphism predicts prognosis in patients with systemic sclerosis. Ann Rheum Dis. 2012;71(7):1197–202.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yurovsky VV, Wigley FM, Wise RA, White B. Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol. 1996;48(1–2):84–97.PubMedCrossRefGoogle Scholar
  65. 65.
    Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, Platsoucas CD. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002;168(7):3649–59.PubMedCrossRefGoogle Scholar
  66. 66.
    Farge D, Henegar C, Carmagnat M, Daneshpouy M, Marjanovic Z, Rabian C, et al. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum. 2005;52(5):1555–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bosello S, De Luca G, Tolusso B, Lama G, Angelucci C, Sica G, et al. B cells in systemic sclerosis: a possible target for therapy. Autoimmun Rev. 2011;10(10):624–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Bossini-Castillo L, Broen JC, Simeon CP, Beretta L, Vonk MC, Ortego-Centeno N, et al. A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis. 2011;70(4):638–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Gourh P, Arnett FC, Tan FK, Assassi S, Divecha D, Paz G, et al. Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis. 2010;69(3):550–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Coustet B, Bouaziz M, Dieude P, Guedj M, Bossini-Castillo L, Agarwal S, et al. Independent replication and meta analysis of association studies establish TNFSF4 as a susceptibility gene preferentially associated with the subset of anticentromere-positive patients with systemic sclerosis. J Rheumatol. 2012;39(5):997–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gourh P, Tan FK, Assassi S, Ahn CW, McNearney TA, Fischbach M, et al. Association of the PTPN22 R620W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum. 2006;54(12):3945–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhong MC, Veillette A. Immunology: Csk keeps LYP on a leash. Nat Chem Biol. 2012;8(5):412–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H, et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun. 2010;34(2):155–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M, et al. Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum. 2010;62(3):890–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Coustet B, Dieude P, Guedj M, Bouaziz M, Avouac J, Ruiz B, et al. C8orf13-BLK is a genetic risk locus for systemic sclerosis and has additive effects with BANK1: results from a large French cohort and meta-analysis. Arthritis Rheum. 2011;63(7):2091–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Texido G, Su IH, Mecklenbrauker I, Saijo K, Malek SN, Desiderio S, et al. The B-cell-specific Src-family kinase Blk is dispensable for B-cell development and activation. Mol Cell Biol. 2000;20(4):1227–33.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122(24):3884–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Lopez-Isac E, Bossini-Castillo L, Guerra SG, Denton C, Fonseca C, Assassi S, et al. Identification of IL12RB1 as a novel systemic sclerosis susceptibility locus. Arthritis Rheumatol. 2014;66(12):3521–3.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lopez-Isac E, Campillo-Davo D, Bossini-Castillo L, Guerra SG, Assassi S, Simeon CP, et al. Influence of TYK2 in systemic sclerosis susceptibility: a new locus in the IL-12 pathway. Ann Rheum Dis. 2016;75(8):1521–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Marangoni RG, Korman BD, Allanore Y, Dieude P, Armstrong LL, Rzhetskaya M, et al. A candidate gene study reveals association between a variant of the Peroxisome Proliferator-Activated Receptor Gamma (PPAR-gamma) gene and systemic sclerosis. Arthritis Res Ther. 2015;17:128.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shiokawa D, Tanuma S. Characterization of human DNase I family endonucleases and activation of DNase gamma during apoptosis. Biochemistry. 2001;40(1):143–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Errami Y, Naura AS, Kim H, Ju J, Suzuki Y, El-Bahrawy AH, et al. Apoptotic DNA fragmentation may be a cooperative activity between caspase-activated deoxyribonuclease and the poly(ADP-ribose) polymerase-regulated DNAS1L3, an endoplasmic reticulum-localized endonuclease that translocates to the nucleus during apoptosis. J Biol Chem. 2013;288(5):3460–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Okamoto M, Okamoto N, Yashiro H, Shiokawa D, Sunaga S, Yoshimori A, et al. Involvement of DNase gamma in the resected double-strand DNA breaks in immunoglobulin genes. Biochem Biophys Res Commun. 2005;327(1):76–83.PubMedCrossRefGoogle Scholar
  85. 85.
    Aglietti RA, Dueber EC. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 2017;38(4):261–71.PubMedCrossRefGoogle Scholar
  86. 86.
    Bhattacharya A, Eissa NT. Autophagy and autoimmunity crosstalks. Front Immunol. 2013;4:88.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, et al. PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2005;288(6):L1146–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Kulkarni AA, Thatcher TH, Olsen KC, Maggirwar SB, Phipps RP, Sime PJ. PPAR-gamma ligands repress TGFbeta-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLoS One. 2011;6(1):e15909.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wei J, Zhu H, Komura K, Lord G, Tomcik M, Wang W, et al. A synthetic PPAR-gamma agonist triterpenoid ameliorates experimental fibrosis: PPAR-gamma-independent suppression of fibrotic responses. Ann Rheum Dis. 2014;73(2):446–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol. 2009;174(2):519–33.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wei J, Ghosh AK, Sargent JL, Komura K, Wu M, Huang QQ, et al. PPARgamma downregulation by TGFss in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One. 2010;5(11):e13778.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.CrossRefGoogle Scholar
  93. 93.
    Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.CrossRefGoogle Scholar
  94. 94.
    Consortium GT. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60.CrossRefGoogle Scholar
  95. 95.
    Ueki M, Takeshita H, Fujihara J, Iida R, Yuasa I, Kato H, et al. Caucasian-specific allele in non-synonymous single nucleotide polymorphisms of the gene encoding deoxyribonuclease I-like 3, potentially relevant to autoimmunity, produces an inactive enzyme. Clin Chim Acta. 2009;407(1–2):20–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, Jostins L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med. 2016;8(363):363ra149.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1062–4.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet. 2015;24(R1):R102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155(1):39–55.PubMedCrossRefGoogle Scholar
  100. 100.
    Gupta B, Hawkins RD. Epigenomics of autoimmune diseases. Immunol Cell Biol. 2015;93(3):271–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang X, Joehanes R, Chen BH, Huan T, Ying S, Munson PJ, et al. Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nat Genet. 2015;47(4):345–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum Mol Genet. 2015;24(R1):R111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Takahashi N, Akahoshi M, Matsuda A, Ebe K, Inomata N, Obara K, et al. Association of the IL12RB1 promoter polymorphisms with increased risk of atopic dermatitis and other allergic phenotypes. Hum Mol Genet. 2005;14(21):3149–59.PubMedCrossRefGoogle Scholar
  104. 104.
    Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2013;45(2):124–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Schoenfelder S, Clay I, Fraser P. The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev. 2010;20(2):127–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S, et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by capture Hi-C. Genome Res. 2014;24(11):1854–68.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jager R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun. 2015;6:6178.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R, Javierre BM, et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 2015;25(4):582–97.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Martin P, McGovern A, Orozco G, Duffus K, Yarwood A, Schoenfelder S, et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun. 2015;6:10069.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598–606.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena López-Isac
    • 1
    Email author
  • Marialbert Acosta-Herrera
    • 1
  • Javier Martín
    • 1
  1. 1.Institute of Parasitology and Biomedicine López-Neyra (IPBLN), CSIC, PTS GranadaGranadaSpain

Personalised recommendations