Advertisement

Common Genetic Component in Autoimmunity

  • Gisela OrozcoEmail author
  • Blanca Rueda
Chapter
  • 314 Downloads
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Autoimmune diseases are complex conditions that are characterized by an immune response against self. Although they are a group of heterogeneous disorders and their etiology has not been fully elucidated yet, a number of these conditions share some common characteristics such as inflammation and the presence of autoantibodies and self-reactive T cells.

Ten years ago, a better understanding of human genetic variation and advances in high-throughput genotyping methods has made possible the advent of genome-wide association studies (GWASs). Well-powered GWASs including thousands of individuals and millions of single nucleotide polymorphisms (SNPs) have now been carried out for all the main autoimmune diseases. These GWASs have revealed that many susceptibility risk loci are shared among autoimmune diseases, supporting shared etiological mechanisms.

In this chapter, we summarize the main and more robustly validated shared autoimmunity risk loci found in recent GWAS. More specifically, we discuss the involvement of the HLA and other shared risk loci such as the tumor necrosis factor cytokine and receptor superfamilies, IL23R and IL2RA, and genes involved in the interferon signature and the modulation of T- and B-cell response.

Keywords

Genome-wide association studies (GWASs) Single nucleotide polymorphism (SNP) Shared genetic factors Shared immune pathways Cytokines Interferon T cells B cells 

References

  1. 1.
    Cooper GS, Bynum MLK, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3–4):197–207.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Langlais D, Fodil N, Gros P. Genetics of infectious and inflammatory diseases: overlapping discoveries from association and exome-sequencing studies. Annu Rev Immunol. 2017;35(1):1–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7(8):e1002254.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cortes A, Brown MA. Promise and pitfalls of the immunochip. Arthritis Res Ther. 2011;13(1):101.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45(6):664–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Takeuchi M, Mizuki N, Meguro A, Ombrello MJ, Kirino Y, Satorius C, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet’s disease susceptibility. Nat Genet. 2017;49(3):438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    International Multiple Sclerosis Genetics Consortium (IMSGC), Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, Shah TS, Spencer C, Booth D, Goris A, Oturai A, Saarela J, Fontaine B, Hemmer B, Martin C, Zipp F, D’Alfonso S, Martine MJ. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–60.CrossRefGoogle Scholar
  9. 9.
    López-Isac E, Martín JE, Assassi S, Simeón CP, Carreira P, Ortego-Centeno N, et al. Brief Report: IRF4 newly identified as a common susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-disease meta-analysis of genome-wide association studies. Arthritis Rheumatol. 2016;68(9):2338–44.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Márquez A, Vidal-Bralo L, Rodríguez-Rodríguez L, González-Gay MA, Balsa A, González-Álvaro I, et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 2017;76(1):286–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin JE, Assassi S, Diaz-Gallo LM, Broen JC, Simeon CP, Castellvi I, et al. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum Mol Genet. 2013;22(19):4021–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T, Metspalu A, et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet. 2012;90(4):636–47.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhernakova A, Stahl EA, Trynka G, Raychaudhuri S, Festen EA, Franke L, et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 2011;7(2):e1002004.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Price P, Witt C, Allcock R, Sayer D, Garlepp M, Kok CC, et al. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev. 1999;167(1):257–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Sollid LM, Thorsby E. HLA susceptibility genes in celiac disease: genetic mapping and role in pathogenesis. Gastroenterology. 1993;105(3):910–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Falkner D, Wilson J, Medsger TA, Morel PA. HLA and clinical associations in systemic sclerosis patients with anti-Th/To antibodies. Arthritis Rheum. 1998;41(1):74–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DCO, Sturrock RD. Ankylosing spondylitis and HL-A 27. Lancet. 1973;301(7809):904–7.CrossRefGoogle Scholar
  18. 18.
    Karvonen J. HL-A antigens in psoriasis with special reference to the clinical type, age of onset, exacerbations after respiratory infections and occurrence of arthritis. Ann Clin Res. 1975;7(5):301–11.PubMedGoogle Scholar
  19. 19.
    Goldberg MA, Arnett FC, Bias WB, Shulman LE. Histocompatibility antigens in systemic lupus erythematosus. Arthritis Rheum. 1976;19(2):129–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Siminovitch KA, Bae S-C, Raychaudhuri S, de Bakker PIW, Padyukov L, Klareskog L, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet [Internet]. 2012;44(3):291–6. [cited 2013 Oct 22]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3288335&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  22. 22.
    Nejentsev S, Howson JMM, Walker NM, Szeszko J, Field SF, Stevens HE, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450(7171):887–92.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Field J, Browning SR, Johnson LJ, Danoy P, Varney MD, Tait BD, et al. A polymorphism in the HLA-DPB1 gene is associated with susceptibility to multiple sclerosis. PLoS One. 2010;5(10):e13454.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Morris DL, Taylor KE, Fernando MMA, Nititham J, Alarcón-Riquelme ME, Barcellos LF, et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet. 2012;91(5):778–93.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Evans DM, Spencer CCA, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45(2):202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Strange A, Capon F, Spencer CCA, Knight J, Weale ME, Allen MH, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–90.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010;6(10):1–13.CrossRefGoogle Scholar
  29. 29.
    Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9:271–85.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rieux-Laucat F, Le Deist F, Hivroz C, Roberts I, Debatin K, Fischer A, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347–9. http://www.sciencemag.org/cgi/doi/10.1126/science.7539157.PubMedCrossRefGoogle Scholar
  32. 32.
    Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middelton LA, Lin AY, et al. Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–46.PubMedCrossRefGoogle Scholar
  33. 33.
    McDermott MF, Aksentijevich I, Galon J, McDermott EM, William Ogunkolade B, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Richard AC, Peters JE, Lee JC, Vahedi G, Schäffer AA, Siegel RM, et al. Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network. Genome Med. 2016;8(1):76.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.PubMedCrossRefGoogle Scholar
  36. 36.
    Manku H, Langefeld CD, Guerra SG, Malik TH, Alarcon-Riquelme M, Anaya JM, et al. Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet. 2013;9(7):e1003554.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Graham DSC, Graham RR, Manku H, Wong AK, Whittaker JC, Gaffney PM, et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet. 2008;40(1):83–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488(7412):508–11.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Malmeström C, Gillett A, Jernås M, Khademi M, Axelsson M, Kockum I, et al. Serum levels of LIGHT in MS. Mult Scler J. 2013;19(7):871–6.CrossRefGoogle Scholar
  40. 40.
    Li G, Diogo D, Wu D, Spoonamore J, Dancik V, Franke L, et al. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway. PLoS Genet [Internet]. 2013;9(5):e1003487. [cited 2013 Oct 24]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3656093&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  41. 41.
    Kugathasan S, Baldassano RN, Bradfield JP, Sleiman PMA, Imielinski M, Guthery SL, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40(10):1211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hedl M, Abraham C. A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8–induced IL-1. Proc Natl Acad Sci U S A [Internet]. 2014;111(37):13451–6. http://www.pnas.org/lookup/doi/10.1073/pnas.1404178111.CrossRefGoogle Scholar
  43. 43.
    Kakuta Y, Ueki N, Kinouchi Y, Negoro K, Endo K, Nomura E, et al. TNFSF15 transcripts from risk haplotype for Crohn’s disease are overexpressed in stimulated T cells. Hum Mol Genet. 2009;18(6):1089–98.PubMedCrossRefGoogle Scholar
  44. 44.
    Michelsen KS, Thomas LS, Taylor KD, Yu QT, Mei L, Landers CJ, et al. IBD-associated TL1A gene (TNFSFI5) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4(3):e4719.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zucchelli M, Camilleri M, Andreasson AN, Bresso F, Dlugosz A, Halfvarson J, et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut. 2011;60(12):1671–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E, Papamichael C, Sfikakis PP. Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clin Immunol. 2008;129(2):249–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Petrovic-Rackov L, Pejnovic N. Clinical significance of IL-18, IL-15, IL-12 and TNF-α measurement in rheumatoid arthritis. Clin Rheumatol. 2006;25(4):448–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Vinay DS, Kwon BS. Targeting TNF superfamily members for therapeutic intervention in rheumatoid arthritis. Cytokine. 2012;57:305–12.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bamias G, Kaltsa G, Siakavellas SI, Gizis M, Margantinis G, Zampeli E, et al. Differential expression of the TL1A/DcR3 system of TNF/TNFR-like proteins in large vs. small intestinal Crohn’s disease. Dig Liver Dis. 2012;44(1):30–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Komatsu M, Kobayashi D, Saito K, Furuya D, Yagihashi A, Araake H, et al. Tumor necrosis factor-alpha in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR. Clin Chem. 2001;47(7):1297–301.PubMedGoogle Scholar
  51. 51.
    Wang J, Anders RA, Wang Y, Turner JR, Abraham C, Pfeffer K, et al. The critical role of LIGHT in promoting intestinal inflammation and Crohn’s disease. J Immunol [Internet]. 2005;174(12):8173–82. http://www.jimmunol.org/cgi/content/abstract/174/12/8173.CrossRefGoogle Scholar
  52. 52.
    Bamias G, Kaltsa G, Siakavellas SI, Papaxoinis K, Zampeli E, Michopoulos S, et al. High intestinal and systemic levels of decoy receptor 3 (DcR3) and its ligand TL1A in active ulcerative colitis. Clin Immunol. 2010;137(2):242–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediat Inflamm. 2014;2014:325129.CrossRefGoogle Scholar
  54. 54.
    Boghdadi G, Elewa EA. Increased serum APRIL differentially correlates with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients. Rheumatol Int. 2014;34(9):1217–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Xu D, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 2003;48(12):3475–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Rajabi P, Alaee M, Mousavizadeh K, Samadikuchaksaraei A. Altered expression of TNFSF4 and TRAF2 mRNAs in peripheral blood mononuclear cells in patients with systemic lupus erythematosus: association with atherosclerotic symptoms and lupus nephritis. Inflamm Res [Internet]. 2012;61(12):1347–54. http://link.springer.com/10.1007/s00011-012-0535-6.CrossRefGoogle Scholar
  57. 57.
    Croft M, Duan W, Choi H, Eun SY, Madireddi S, Mehta A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. 2012;33:144–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Sfikakis PP. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. In: TNF pathophysiology. 2010. p. 180–210.Google Scholar
  59. 59.
    Liu Z, Davidson A. BAFF inhibition: a new class of drugs for the treatment of autoimmunity. Exp Cell Res. 2011;317:1270–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science [Internet]. 2006;314(5804):1461–3. http://www.ncbi.nlm.nih.gov/pubmed/17068223%5Cn; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4410764.Google Scholar
  61. 61.
    Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet [Internet]. 2007;80(2):273–90. http://linkinghub.elsevier.com/retrieve/pii/S0002929707626858.CrossRefGoogle Scholar
  62. 62.
    Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet [Internet]. 2007;39(11):1329–37. [cited 2013 Oct 24]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2680141&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  63. 63.
    Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A [Internet]. 2011;108(23):9560–5. http://www.pnas.org/cgi/doi/10.1073/pnas.1017854108.CrossRefGoogle Scholar
  64. 64.
    McInnes IB, Sieper J, Braun J, Emery P, van der Heijde D, Isaacs JD, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis [Internet]. 2014;73(2):349–56. [cited 2018 Mar 7]. http://www.ncbi.nlm.nih.gov/pubmed/23361084.CrossRefGoogle Scholar
  65. 65.
    Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med [Internet]. 2010;2(52):52ra72. [cited 2018 Mar 7]. http://www.ncbi.nlm.nih.gov/pubmed/20926833.Google Scholar
  66. 66.
    Sieper J, Deodhar A, Marzo-Ortega H, Aelion JA, Blanco R, Jui-Cheng T, et al. Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 Study. Ann Rheum Dis [Internet]. 2017;76(3):571–92. [cited 2018 Mar 7]. http://www.ncbi.nlm.nih.gov/pubmed/27582421.CrossRefGoogle Scholar
  67. 67.
    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation [Internet]. Am J Hum Genet. 2017;101:5–22. Cell Press; [cited 2018 Mar 7]. https://www.sciencedirect.com/science/article/pii/S0002929717302409?via%3Dihub.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Farh KKH, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet [Internet]. 2013;14(9):661–73. [cited 2013 Oct 18]. http://www.ncbi.nlm.nih.gov/pubmed/23917628.CrossRefGoogle Scholar
  70. 70.
    Hartmann FJ, Khademi M, Aram J, Ammann S, Kockum I, Constantinescu C, et al. Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human THcells. Nat Commun. 2014;5:5056.PubMedCrossRefGoogle Scholar
  71. 71.
    Cerosaletti K, Schneider A, Schwedhelm K, Frank I, Tatum M, Wei S, et al. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+CD25hiT cells of type 1 diabetic and multiple sclerosis patients. PLoS One. 2013;8(12):e83811.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dendrou CA, Plagnol V, Fung E, Yang JHM, Downes K, Cooper JD, et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet [Internet]. 2009;41(9):1011–5. [cited 2013 Oct 24]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2749506&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  73. 73.
    Ye CJ, Feng T, Kwon H-K, Raj T, Wilson MT, Asinovski N, et al. Intersection of population variation and autoimmunity genetics in human T cell activation. Science. 2014;345(6202):1254665. http://www.sciencemag.org/cgi/doi/10.1126/science.1254665.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Huang H, Fang M, Jostins L, Umićević Mirkov M, Boucher G, Anderson CA, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547(7662):173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD, Mumbach MR, et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature. 2017;549:111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet [Internet]. 2007;39(9):1074–82. [cited 2013 Oct 24]. http://www.ncbi.nlm.nih.gov/pubmed/17676041.CrossRefGoogle Scholar
  77. 77.
    Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet [Internet]. 2007;39(7):857–64. [cited 2013 Oct 24]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2492393&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  78. 78.
    Todd JA, Evangelou M, Cutler AJ, Pekalski ML, Walker NM, Stevens HE, et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: a non-randomised, open label, adaptive dose-finding trial. PLoS Med. 2016;13(10):e1002139.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Forster S. Interferon signatures in immune disorders and disease. Immunol Cell Biol. 2012;90:520–7.PubMedCrossRefGoogle Scholar
  80. 80.
    López de Padilla CM, Niewold TB. The type I interferons: basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene. 2016;576:14–21.PubMedCrossRefGoogle Scholar
  81. 81.
    Delgado-Vega AM, Alarcón-Riquelme ME, Kozyrev SV. Genetic associations in type I interferon related pathways with autoimmunity. Arthritis Res Ther. 2010;12:S2.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Niewold TB. Advances in lupus genetics. Curr Opin Rheumatol. 2015;27:440–7.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Liang Y, Pan H-F, Ye D-Q. Therapeutic potential of STAT4 in autoimmunity. Expert Opin Ther Targets [Internet]. 2014;18(8):945–60. http://www.tandfonline.com/doi/full/10.1517/14728222.2014.920325.CrossRefGoogle Scholar
  84. 84.
    Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvänen AC, Rönnblom L, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 2011;7(10):e1002341.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet [Internet]. 2008;40(8):955–62. [cited 2013 Oct 24]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2574810&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  87. 87.
    Elding H, Lau W, Swallow DM, Maniatis N. Dissecting the genetics of complex inheritance: linkage disequilibrium mapping provides insight into Crohn disease. Am J Hum Genet [Internet]. 2011;89(6):798–805. [cited 2013 Oct 24]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3234369&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  88. 88.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature [Internet]. 2014;506(7488):376–81. [cited 2018 Mar 26]. http://www.nature.com/articles/nature12873.CrossRefGoogle Scholar
  89. 89.
    De Jager PL, Jia X, Wang J, De Bakker PIW, Ottoboni L, Aggarwal NT, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet [Internet]. 2009;41(7):776–82.  https://doi.org/10.1038/ng.401.CrossRefGoogle Scholar
  90. 90.
    Leppä V, Surakka I, Tienari PJ, Elovaara I, Compston A, Sawcer S, et al. The genetic association of variants in CD6, TNFRSF1A and IRF8 to multiple sclerosis: a multicenter case-control study. PLoS One. 2011;6(4):e18813.Google Scholar
  91. 91.
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet [Internet]. 2004;36(4):337–8. [cited 2013 Oct 24]. http://www.ncbi.nlm.nih.gov/pubmed/15004560.CrossRefGoogle Scholar
  92. 92.
    Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK, et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology. 2007;46(1):49–56.PubMedCrossRefGoogle Scholar
  93. 93.
    Gourh P, Tan FK, Assassi S, Ahn CW, McNearney TA, Fischbach M, et al. Association of the PTPN22 R620W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum. 2006;54(12):3945–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Hedjoudje A, Cheurfa C, Briquez C, Zhang A, Koch S, Vuitton L. Rs2476601 polymorphism in PTPN22 is associated with Crohn’s disease but not with ulcerative colitis: a meta-analysis of 16,838 cases and 13,356 controls. Ann Gastroenterol. 2017;30(2):197–208.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet [Internet]. 2011;43(9):902–7.  https://doi.org/10.1038/ng.904.CrossRefGoogle Scholar
  96. 96.
    Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10:602–11.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol. 2012;12:774–85.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet [Internet]. 2008;40(9):1062–4. [cited 2013 Oct 24]. http://www.ncbi.nlm.nih.gov/pubmed/19165919.CrossRefGoogle Scholar
  99. 99.
    Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC, et al. Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Hum Mol Genet. 2012;21(12):2825–35.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43:253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Elsby LM, Orozco G, Denton J, Worthington J, Ray DW, Donn RP. Functional evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(5):708–14. http://www.scopus.com/inward/record.url?eid=2-s2.0-78650560490&partnerID=MN8TOARS.PubMedPubMedCentralGoogle Scholar
  102. 102.
    McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, et al. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol. 2016;17(1):212. http://europepmc.org/abstract/med/27799070.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66–73.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bossini-Castillo L, López-Isac E, Martín J. Immunogenetics of systemic sclerosis: defining heritability, functional variants and shared-autoimmunity pathways. J Autoimmun. 2015;64:53–65.PubMedCrossRefGoogle Scholar
  106. 106.
    Alpi AF, Chaugule V, Walden H. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J. 2016;473(20):3401–19.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Järvinen TM, Hellquist A, Zucchelli M, Koskenmies S, Panelius J, Hasan T, et al. Replication of GWAS-identified systemic lupus erythematosus susceptibility genes affirms B-cell receptor pathway signalling and strengthens the role of IRF5 in disease susceptibility in a Northern European population. Rheumatology. 2012;51(1):87–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Génin E, Coustet B, Allanore Y, Ito I, Teruel M, Constantin A, et al. Epistatic interaction between BANK1 and BLK in rheumatoid arthritis: results from a large trans-ethnic meta-analysis. PLoS One. 2013;8(4):e61044.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rueda B, Gourh P, Broen J, Agarwal SK, Simeon C, Ortego-Centeno N, et al. BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis. 2010;69(4):700–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H, et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun. 2010;34(2):155–62.PubMedCrossRefGoogle Scholar
  111. 111.
    Yokoyama K, Su IH, Tezuka T, Yasuda T, Mikoshiba K, Tarakhovsky A, et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP3receptor. EMBO J. 2002;21(1–2):83–92.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MVP, Sanchez E, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(2):211–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Tretter T, Ross AE, Dordai DI, Desiderio S. Mimicry of pre–B cell receptor signaling by activation of the tyrosine kinase Blk. J Exp Med. 2003;198(12):1863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Castillejo-López C, Delgado-Vega AM, Wojcik J, Kozyrev SV, Thavathiru E, Wu YY, et al. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK. Ann Rheum Dis. 2012;71(1):136–42.PubMedCrossRefGoogle Scholar
  116. 116.
    Subramanian V, Knight JS, Parelkar S, Anguish L, Coonrod SA, Kaplan MJ, et al. Design, synthesis, and biological evaluation of tetrazole analogs of Cl-amidine as protein arginine deiminase inhibitors. J Med Chem. 2015;58(3):1337–44.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kawalkowska J, Quirke AM, Ghari F, Davis S, Subramanian V, Thompson PR, et al. Abrogation of collagen-induced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses. Sci Rep. 2016;6:26430.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22(9):1748–59.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet [Internet]. 2011;43(6):513–8. [cited 2013 Oct 18]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3325768&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  121. 121.
    Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30:1095–106.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol [Internet]. 2016;17(12):771–82. [cited 2018 Mar 26]. http://www.nature.com/articles/nrm.2016.138.CrossRefGoogle Scholar
  123. 123.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science [Internet]. 2009;326(5950):289–93. [cited 2013 Oct 17]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2858594&tool=pmcentrez&rendertype=abstract.Google Scholar
  124. 124.
    Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S, et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res. 2014;24(11):1854–68.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Jäger R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun. 2015;6:6178.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Javierre BM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ, et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell. 2016;167(5):1369–84.e19.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Martin P, McGovern A, Orozco G, Duffus K, Yarwood A, Schoenfelder S, et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun. 2015;6:10069. http://europepmc.org/abstract/med/26616563.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet [Internet]. 2018;102(5):717–30. [cited 2018 May 11]. http://www.ncbi.nlm.nih.gov/pubmed/29727686.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
  2. 2.Faculty of Health SciencesUniversity of GranadaGranadaSpain

Personalised recommendations