Autoimmune Myasthenia Gravis

  • Güher Saruhan-DireskeneliEmail author
  • Amr H. Sawalha
Part of the Rare Diseases of the Immune System book series (RDIS)


Being the main autoimmune disease of the neuromuscular junction, myasthenia gravis (MG) is among the rare diseases. With the defined autoantigens and relatively well understood pathogenesis, the disease is heterogeneous. Disease subgroups are being diversified with respect to age at disease onset, clinical presentation, sex distribution, autoantigens, as well as associated thymic pathologies. Genetic susceptibility to MG was implicated by family studies, and HLA has been shown as the first marker of predisposition. With refinement of the genetic studies as well as the disease classification, the associations of early-onset anti-acetylcholine receptor antibody-positive patients with HLA-B*08 and muscle-specific kinase antibody-positive patients with HLA-DQB1*05 and HLA-DRB1*16 or -DRB1*14 have been repeatedly demonstrated. Recent genome-wide screenings in disease subgroups have confirmed these regions. Other immune-related candidate genes such as PTPN22, TNIP1, CTLA4, and TNFRSF11A were also found associated with MG. Differential role of genetic associations in disease subgroups could lead to the understanding of the mechanisms in MG.


Myasthenia gravis genetics Early-onset Late-onset Muscle-specific kinase antibody Acetylcholine receptor antibody HLA Susceptibility 


  1. 1.
    Drachman DB. Myasthenia gravis. N Engl J Med. 1994;330(25):1797–810.PubMedCrossRefGoogle Scholar
  2. 2.
    Lindstrom J, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Farrugia ME, Vincent A. Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol. 2010;23(5):489–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:46.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hohlfeld R, Toyka KV, Tzartos SJ, Carson W, Conti-Tronconi BM. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor alpha subunit. Proc Natl Acad Sci U S A. 1987;84(15):5379–83.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Compston D, Vincent A, Newsom-Davis J, et al. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain. 1980;103:579–601.PubMedCrossRefGoogle Scholar
  7. 7.
    Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8(5):475–90.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Marx A, Willcox N, Leite MI, Chuang WY, Schalke B, Nix W, et al. Thymoma and paraneoplastic myasthenia gravis. Autoimmunity. 2010;43(5–6):413–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973;180(4088):871–2.PubMedCrossRefGoogle Scholar
  10. 10.
    Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73(2):150–1.PubMedCrossRefGoogle Scholar
  12. 12.
    Wekerle H, Ketelsen UP. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet. 1977;1(8013):678–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41(6):1517–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7(3):365–8.CrossRefGoogle Scholar
  16. 16.
    Verschuuren JJ, Huijbers MG, Plomp JJ, Niks EH, Molenaar PC, Martinez-Martinez P, et al. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev. 2013;12(9):918–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Deymeer F, Gungor-Tuncer O, Yilmaz V, Parman Y, Serdaroglu P, Ozdemir C, et al. Clinical comparison of anti-MuSK- vs anti-AChR-positive and seronegative myasthenia gravis. Neurology. 2007;68(8):609–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun. 2014;48–49:143–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2012;69(2):418–22.CrossRefGoogle Scholar
  20. 20.
    Zhang B, Shen C, Bealmear B, Ragheb S, Xiong W-C, Lewis RA, et al. Autoantibodies to agrin in myasthenia gravis patients. PLoS One. 2014;9(3):e91816.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zisimopoulou P, Brenner T, Trakas N, Tzartos SJ. Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev. 2013;12(9):924–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Rodgaard A, Nielsen F, Djurup R, Somnier F, Gammeltoft S. Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol. 1987;67:82–8.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Drachman DB. Myasthenia gravis (first of two parts). N Engl J Med. 1978;298(3):136–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Engel AG, Sahashi K, Fumagalli G. The immunopathology of acquired myasthenia gravis. Ann N Y Acad Sci. 1981;377:158–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Pirskanen R. Genetic aspects in myasthenia gravis. A family study of 264 Finnish patients. Acta Neurol Scand. 1977;56(5):365–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Namba T, Shapiro MS, Brunner NG, Grob D. Myasthenia gravis occurring in twins. J Neurol Neurosurg Psychiatry. 1971;34(5):531–4.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Seybold ME, Lindstrom JM. Antiacetylcholine receptor antibody and its relationship to HLA type in asymptomatic siblings of a patient with myasthenia gravis. Neurology. 1981;31(6):778–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Leslie RD, Hawa M. Twin studies in auto-immune disease. Acta Genet Med Gemellol (Roma). 1994;43(1–2):71–81.CrossRefGoogle Scholar
  29. 29.
    Ramanujam R, Pirskanen R, Ramanujam S, Hammarstrom L. Utilizing twins concordance rates to infer the predisposition to myasthenia gravis. Twin Res Hum Genet. 2011;14(2):129–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, et al. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun. 2017;82:62–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Pirskanen R, Tiilikainen A, Hokkanen E. Histocompatibility (HL-A) antigens associated with myasthenia gravis. A preliminary report. Ann Clin Res. 1972;4(5):304–6.PubMedGoogle Scholar
  32. 32.
    Fritze D, Herrman C Jr, Naeim F, Smith GS, Walford RL. HL-A antigens in myasthenia gravis. Lancet. 1974;1(7851):240–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Giraud M, Beaurain G, Yamamoto AM, Eymard B, Tranchant C, Gajdos P, et al. Linkage of HLA to myasthenia gravis and genetic heterogeneity depending on anti-titin antibodies. Neurology. 2001;57(9):1555–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Feltkamp TE, van den Berg-Loonen PM, Nijenhuis LE, Engelfriet CP, van Rossum AL, van Loghem JJ, et al. Myasthenia gravis, autoantibodies, and HL-A antigens. Br Med J. 1974;1(5899):131–3.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Carlsson B, Wallin J, Pirskanen R, Matell G, Smith CI. Different HLA DR-DQ associations in subgroups of idiopathic myasthenia gravis. Immunogenetics. 1990;31(5–6):285–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaul R, Shenoy M, Goluszko E, Christadoss P. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. J Immunol. 1994;152(6):3152–7.PubMedGoogle Scholar
  37. 37.
    Machens A, Loliger C, Pichlmeier U, Emskotter T, Busch C, Izbicki JR. Correlation of thymic pathology with HLA in myasthenia gravis. Clin Immunol. 1999;91(3):296–301.PubMedCrossRefGoogle Scholar
  38. 38.
    Pirskanen R. Genetic associations between myasthenia gravis and the HL-A system. J Neurol Neurosurg Psychiatry. 1976;39(1):23–33.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ratanachaiyavong S, Fleming D, Janer M, Demaine AG, Willcox N, Newsom-Davis J, et al. HLA-DPB1 polymorphisms in patients with hyperthyroid Graves’ disease and early onset myasthenia gravis. Autoimmunity. 1994;17(2):99–104.PubMedCrossRefGoogle Scholar
  40. 40.
    Janer M, Cowland A, Picard J, Campbell D, Pontarotti P, Newsom-Davis J, et al. A susceptibility region for myasthenia gravis extending into the HLA-class I sector telomeric to HLA-C. Hum Immunol. 1999;60(9):909–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Spurkland A, Gilhus NE, Ronningen KS, Aarli JA, Vartdal F. Myasthenia gravis patients with thymus hyperplasia and myasthenia gravis patients with thymoma display different HLA associations. Tissue Antigens. 1991;37(2):90–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Vieira M, Caillat- Zuchman S, Gajdos P, et al. Identification by genomic typing of non-DR3 HLA class II genes associated with myasthenia gravis. J Neuroimmunol. 1993;47:115–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Bell J, Rassenti L, Smoot S, Smith K, Newby C, Hohlfeld R, et al. HLA-DQ beta-chain polymorphism linked to myasthenia gravis. Lancet. 1986;1(8489):1058–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Hjelmstrom P, Giscombe R, Lefvert AK, Pirskanen R, Kockum I, Landin-Olsson M, et al. Different HLA-DQ are positively and negatively associated in Swedish patients with myasthenia gravis. Autoimmunity. 1995;22(1):59–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Hjelmstrom P, Giscombe R, Lefvert AK, Pirskanen R, Kockum I, Landin-Olsson M, et al. Polymorphic amino acid domains of the HLA-DQ molecule are associated with disease heterogeneity in myasthenia gravis. J Neuroimmunol. 1996;65(2):125–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Hajeer AH, Sawidan FA, Bohlega S, Saleh S, Sutton P, Shubaili A, et al. HLA class I and class II polymorphisms in Saudi patients with myasthenia gravis. Int J Immunogenet. 2009;36(3):169–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Saruhan-Direskeneli G, Kilic A, Parman Y, Serdaroglu P, Deymeer F. HLA-DQ polymorphism in Turkish patients with myasthenia gravis. Hum Immunol. 2006;67(4–5):352–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Donmez B, Ozakbas S, Oktem MA, Gedizlioglu M, Coker I, Genc A, et al. HLA genotypes in Turkish patients with myasthenia gravis: comparison with multiple sclerosis patients on the basis of clinical subtypes and demographic features. Hum Immunol. 2004;65(7):752–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Fernandez-Mestre MT, Vargas V, Montagnani S, Cotua M, Ogando V, Layrisse Z. HLA class II and class I polymorphism in Venezuelan patients with myasthenia gravis. Hum Immunol. 2004;65(1):54–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Santos E, Bettencourt A, da Silva AM, Boleixa D, Lopes D, Brás S, et al. HLA and age of onset in myasthenia gravis. Neuromuscul Disord. 2017;27(7):650–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Maniaol AH, Elsais A, Lorentzen AR, Owe JF, Viken MK, Saether H, et al. Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population. PLoS One. 2012;7(5):e36603.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Deitiker PR, Oshima M, Smith RG, Mosier D, Atassi MZ. Association with HLA DQ of early onset myasthenia gravis in Southeast Texas region of the United States. Int J Immunogenet. 2011;38(1):55–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Ehsan S, Amirzargar A, Yekaninejad MS, Mahmoudi M, Mehravar S, Moradi B, Nafissi S. Association of HLA class II (DRB1, DQA1, DQB1) alleles and haplotypes with myasthenia gravis and its subgroups in the Iranian population. J Neurol Sci. 2015;359(1):335–42. Scholar
  54. 54.
    Kida K, Hayashi M, Yamada I, Matsuda H, Yoshinaga J, Takami S, et al. Heterogeneity in myasthenia gravis: HLA phenotypes and autoantibody responses in ocular and generalized types. Ann Neurol. 1987;21(3):274–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Testi M, Terracciano C, Guagnano A, Testa G, Marfia GA, Pompeo E, et al. Association of HLA-DQB1 *05:02 and DRB1 *16 alleles with late-onset, nonthymomatous, AChR-Ab-positive myasthenia gravis. Autoimmune Dis. 2012;2012:541760.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Matsuki K, Juji T, Tokunaga K, Takamizawa M, Maeda H, Soda M, et al. HLA antigens in Japanese patients with myasthenia gravis. J Clin Invest. 1990;86(2):392–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Morita K, Moriuchi J, Inoko H, Tsuji K, Arimori S. HLA class II antigens and DNA restriction fragment length polymorphism in myasthenia gravis in Japan. Ann Neurol. 1991;29(2):168–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Horiki T, Inoko H, Moriuchi J, Ichikawa Y, Arimori S. Combinations of HLA-DPB1 and HLA-DQB1 alleles determine susceptibility to early-onset myasthenia gravis in Japan. Autoimmunity. 1994;19(1):49–54.PubMedCrossRefGoogle Scholar
  59. 59.
    Xie YC, Qu Y, Sun L, Li HF, Zhang H, Shi HJ, et al. Association between HLA-DRB1 and myasthenia gravis in a northern Han Chinese population. J Clin Neurosci. 2011;18(11):1524–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Feng HY, Yang LX, Liu WB, Huang X, Qiu L, Li Y. The HLA-B*4601-DRB1*0901 haplotype is positively correlated with juvenile ocular myasthenia gravis in a southern Chinese Han population. Neurol Sci. 2015;36(7):1135–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Giraud M, Beaurain G, Eymard B, Tranchant C, Gajdos P, Garchon HJ. Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci. Genes Immun. 2004;5(5):398–404.PubMedCrossRefGoogle Scholar
  62. 62.
    Djabiri F, Caillat-Zucman S, Gajdos P, Jais JP, Gomez L, Khalil I, et al. Association of the AChRalpha-subunit gene (CHRNA), DQA1*0101, and the DR3 haplotype in myasthenia gravis. Evidence for a three-gene disease model in a subgroup of patients. J Autoimmun. 1997;10(4):407–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Vandiedonck C, Beaurain G, Giraud M, Hue-Beauvais C, Eymard B, Tranchant C, et al. Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proc Natl Acad Sci U S A. 2004;101(43):15464–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Franciotta D, Cuccia M, Dondi E, Piccolo G, Cosi V. Polymorphic markers in MHC class II/III region: a study on Italian patients with myasthenia gravis. J Neurol Sci. 2001;190(1–2):11–6.PubMedCrossRefGoogle Scholar
  65. 65.
    International MHC and Autoimmunity Genetics Network, Rioux JD, Goyette P, Vyse TJ, Hammarstrom L, et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci U S A. 2009;106(44):18680–5.CrossRefGoogle Scholar
  66. 66.
    Varade J, Wang N, Lim CK, Zhang T, Zhang Y, Liu X, et al. Novel genetic loci associated HLA-B*08:01 positive myasthenia gravis. J Autoimmun. 2018;88:43–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Strobel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class II and AIRE genes and genetic polymorphisms. Ann N Y Acad Sci. 2008;1132:143–56.PubMedCrossRefGoogle Scholar
  68. 68.
    Zettl A, Strobel P, Wagner K, Katzenberger T, Ott G, Rosenwald A, et al. Recurrent genetic aberrations in thymoma and thymic carcinoma. Am J Pathol. 2000;157(1):257–66.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Garcia-Ramos G, Tellez-Zenteno JF, Zapata-Zuniga M, Yamamoto-Furusho JK, Ruiz-Morales JA, Villarreal-Garza C, et al. HLA class II genotypes in Mexican Mestizo patients with myasthenia gravis. Eur J Neurol. 2003;10(6):707–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Vandiedonck C, Raffoux C, Eymard B, Tranchant C, Dulmet E, Krumeich S, et al. Association of HLA-A in autoimmune myasthenia gravis with thymoma. J Neuroimmunol. 2009;210(1–2):120–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Niks EH, Kuks JB, Roep BO, Haasnoot GW, Verduijn W, Ballieux BE, et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology. 2006;66(11):1772–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Bartoccioni E, Scuderi F, Augugliaro A, Chiatamone Ranieri S, Sauchelli D, Alboino P, et al. HLA class II allele analysis in MuSK-positive myasthenia gravis suggests a role for DQ5. Neurology. 2009;72(2):195–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Alahgholi-Hajibehzad M, Yilmaz V, Gulsen-Parman Y, Aysal F, Oflazer P, Deymeer F, Saruhan-Direskeneli G. Association of HLA-DRB1 *14, -DRB1 *16 and -DQB1 *05 with MuSK-myasthenia gravis in patients from Turkey. Hum Immunol. 2013;74(12):1633–5. Scholar
  74. 74.
    Nikolic AV, Andric ZP, Simonovic RB, Rakocevic Stojanovic VM, Basta IZ, Bojic SD, Lavrnic DV. High frequency of DQB1*05 and absolute absence of DRB1*13 in muscle-specific tyrosine kinase positive myasthenia gravis. Eur J Neurol. 2015;22(1):59–63. Scholar
  75. 75.
    Kanai T, Uzawa A, Kawaguchi N, Sakamaki T, Yoshiyama Y, Himuro K, et al. HLA-DRB1*14 and DQB1*05 are associated with Japanese anti-MuSK antibody-positive myasthenia gravis patients. J Neurol Sci. 2016;363:116–8. Scholar
  76. 76.
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 2011;585(23):3689–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Vandiedonck C, Capdevielle C, Giraud M, Krumeich S, Jais JP, Eymard B, et al. Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol. 2006;59(2):404–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Greve B, Hoffmann P, Illes Z, Rozsa C, Berger K, Weissert R, et al. The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis. Hum Immunol. 2009;70(7):540–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Lefvert AK, Zhao Y, Ramanujam R, Yu S, Pirskanen R, Hammarstrom L. PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol. 2008;197(2):110–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Chuang WY, Strobel P, Belharazem D, Rieckmann P, Toyka KV, Nix W, et al. The PTPN22gain-of-function+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun. 2009;10(8):667–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Kaya GA, Coskun AN, Yilmaz V, Oflazer P, Gulsen-Parman Y, Aysal F, et al. The association of PTPN22 R620W polymorphism is stronger with late-onset AChR-myasthenia gravis in Turkey. PLoS One. 2014;9(8):e104760.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Huang D, Liu L, Noren K, Xia SQ, Trifunovic J, Pirskanen R, et al. Genetic association of CTLA-4 to myasthenia gravis with thymoma. J Neuroimmunol. 1998;88(1–2):192–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Huang D, Giscombe R, Zhou Y, Pirskanen R, Lefvert AK. Dinucleotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J Neuroimmunol. 2000;105(1):69–77.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang XB, Kakoulidou M, Giscombe R, Qiu Q, Huang D, Pirskanen R, et al. Abnormal expression of CTLA-4 by T cells from patients with myasthenia gravis: effect of an AT-rich gene sequence. J Neuroimmunol. 2002;130(1–2):224–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang XB, Kakoulidou M, Qiu Q, Giscombe R, Huang D, Pirskanen R, et al. CDS1 and promoter single nucleotide polymorphisms of the CTLA-4 gene in human myasthenia gravis. Genes Immun. 2002;3(1):46–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Chuang WY, Strobel P, Gold R, Nix W, Schalke B, Kiefer R, et al. A CTLA4high genotype is associated with myasthenia gravis in thymoma patients. Ann Neurol. 2005;58(4):644–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Chuang WY, Strobel P, Bohlender-Willke AL, Rieckmann P, Nix W, Schalke B, et al. Late-onset myasthenia gravis—CTLA4(low) genotype association and low-for-age thymic output of naive T cells. J Autoimmun. 2014;52:122–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang XB, Pirskanen R, Giscombe R, Lefvert AK. Two SNPs in the promoter region of the CTLA-4 gene affect binding of transcription factors and are associated with human myasthenia gravis. J Intern Med. 2008;263(1):61–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Sun L, Meng Y, Xie Y, Zhang H, Zhang Z, Wang X, et al. CTLA4 variants and haplotype contribute genetic susceptibility to myasthenia gravis in northern Chinese population. PLoS One. 2014;9(7):e101986.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Garchon HJ, Djabiri F, Viard JP, Gajdos P, Bach JF. Involvement of human muscle acetylcholine receptor alpha-subunit gene (CHRNA) in susceptibility to myasthenia gravis. Proc Natl Acad Sci U S A. 1994;91(11):4668–72.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Djabiri F, Gajdos P, Eymard B, Gomez L, Bach JF, Garchon HJ. No evidence for an association of AChR beta-subunit gene (CHRNB1) with myasthenia gravis. J Neuroimmunol. 1997;78(1–2):86–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Bonifati DM, Willcox N, Vincent A, Beeson D. Lack of association between acetylcholine receptor epsilon polymorphisms and early-onset myasthenia gravis. Muscle Nerve. 2004;29(3):436–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Giraud M, Eymard B, Tranchant C, Gajdos P, Garchon HJ. Association of the gene encoding the delta-subunit of the muscle acetylcholine receptor (CHRND) with acquired autoimmune myasthenia gravis. Genes Immun. 2004;5(1):80–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Li HF, Hong Y, Zhang X, Xie Y, Skeie GO, Hao HJ, et al. Gene polymorphisms for both auto-antigen and immune-modulating proteins are associated with the susceptibility of autoimmune myasthenia gravis. Mol Neurobiol. 2017;54(6):4771–80.PubMedCrossRefGoogle Scholar
  96. 96.
    Demaine A, Willcox N, Janer M, Welsh K, Newsom-Davis J. Immunoglobulin heavy chain gene associations in myasthenia gravis: new evidence for disease heterogeneity. J Neurol. 1992;239(1):53–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Oksenberg JR, Sherritt M, Begovich AB, Erlich HA, Bernard CC, Cavalli-Sforza LL, et al. T-cell receptor V alpha and C alpha alleles associated with multiple and myasthenia gravis. Proc Natl Acad Sci U S A. 1989;86(3):988–92.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Raknes G, Skeie GO, Gilhus NE, Aadland S, Vedeler C. FcgammaRIIA and FcgammaRIIIB polymorphisms in myasthenia gravis. J Neuroimmunol. 1998;81(1–2):173–6.PubMedCrossRefGoogle Scholar
  99. 99.
    van der Pol WL, Jansen MD, Kuks JB, de Baets M, Leppers-van de Straat FG, Wokke JH, et al. Association of the Fc gamma receptor IIA-R/R131 genotype with myasthenia gravis in Dutch patients. J Neuroimmunol. 2003;144(1–2):143–7.PubMedGoogle Scholar
  100. 100.
    Amdahl C, Alseth EH, Gilhus NE, Nakkestad HL, Skeie GO. Polygenic disease associations in thymomatous myasthenia gravis. Arch Neurol. 2007;64(12):1729–33.PubMedCrossRefGoogle Scholar
  101. 101.
    Zelano G, Lino MM, Evoli A, Settesoldi D, Batocchi AP, Torrente I, et al. Tumour necrosis factor beta gene polymorphisms in myasthenia gravis. Eur J Immunogenet. 1998;25(6):403–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Hjelmstrom P, Peacock CS, Giscombe R, Pirskanen R, Lefvert AK, Blackwell JM, et al. Polymorphism in tumor necrosis factor genes associated with myasthenia gravis. J Neuroimmunol. 1998;88(1–2):137–43.PubMedCrossRefGoogle Scholar
  103. 103.
    Skeie GO, Pandey JP, Aarli JA, Gilhus NE. TNFA and TNFB polymorphisms in myasthenia gravis. Arch Neurol. 1999;56(4):457–61.PubMedCrossRefGoogle Scholar
  104. 104.
    Huang D, Xia S, Zhou Y, Pirskanen R, Liu L, Lefvert AK. No evidence for interleukin-4 gene conferring susceptibility to myasthenia gravis. J Neuroimmunol. 1998;92(1–2):208–11.PubMedCrossRefGoogle Scholar
  105. 105.
    Huang D, Zheng C, Giscombe R, Matell G, Pirskanen R, Kari Lefvert A. Polymorphisms at -174 and in the 3′-flanking region of interleukin-6 (IL-6) gene in patients with myasthenia gravis. J Neuroimmunol. 1999;101(2):197–200.PubMedCrossRefGoogle Scholar
  106. 106.
    Huang D, Pirskanen R, Hjelmstrom P, Lefvert AK. Polymorphisms in IL-1beta and IL-1 receptor antagonist genes are associated with myasthenia gravis. J Neuroimmunol. 1998;81(1–2):76–81.PubMedCrossRefGoogle Scholar
  107. 107.
    Sciacca FL, Ferri C, Veglia F, Andreetta F, Mantegazza R, Cornelio F, et al. IL-1 genes in myasthenia gravis: IL-1A -889 polymorphism associated with sex and age of disease onset. J Neuroimmunol. 2002;122(1–2):94–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Huang DR, Zhou YH, Xia SQ, Liu L, Pirskanen R, Lefvert AK. Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease. J Neuroimmunol. 1999;94(1–2):82–7.PubMedGoogle Scholar
  109. 109.
    Alseth EH, Nakkestad HL, Aarseth J, Gilhus NE, Skeie GO. Interleukin-10 promoter polymorphisms in myasthenia gravis. J Neuroimmunol. 2009;210(1–2):63–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Yilmaz V, Demirbilek V, Gurses C, Yentur SP, Uysal S, Yapici Z, et al. Interleukin (IL)-12, IL-2, interferon-gamma gene polymorphisms in subacute sclerosing panencephalitis patients. J Neurovirol. 2007;13(5):410–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Pal Z, Varga Z, Semsei A, Remenyi V, Rozsa C, Falus A, et al. Interleukin-4 receptor alpha polymorphisms in autoimmune myasthenia gravis in a Caucasian population. Hum Immunol. 2012;73(2):193–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Yue YX, Hong Y, Xie Y, Hao HJ, Sui Y, Gu CK, et al. Association study between IL-17A and IL-17F gene polymorphism and myasthenia gravis in Chinese patients. Neurol Sci. 2016;37(1):123–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Xu BY, Huang D, Pirskanen R, Lefvert AK. beta2-adrenergic receptor gene polymorphisms in myasthenia gravis (MG). Clin Exp Immunol. 2000;119(1):156–60.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sakthivel P, Ramanujam R, Wang XB, Pirskanen R, Lefvert AK. Programmed Death-1: from gene to protein in autoimmune human myasthenia gravis. J Neuroimmunol. 2008;193(1–2):149–55.PubMedCrossRefGoogle Scholar
  115. 115.
    Ramanujam R, Zhao Y, Pirskanen R, Hammarstrom L. Lack of association of the CIITA -168A-->G promoter SNP with myasthenia gravis and its role in autoimmunity. BMC Med Genet. 2010;11:147.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zagoriti Z, Georgitsi M, Giannakopoulou O, Ntellos F, Tzartos SJ, Patrinos GP, et al. Genetics of myasthenia gravis: a case-control association study in the Hellenic population. Clin Dev Immunol. 2012;2012:484919.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Pal Z, Antal P, Millinghoffer A, Hullam G, Paloczi K, Toth S, et al. A novel galectin-1 and interleukin 2 receptor beta haplotype is associated with autoimmune myasthenia gravis. J Neuroimmunol. 2010;229(1–2):107–11.PubMedCrossRefGoogle Scholar
  118. 118.
    Xie Y, Meng Y, Li HF, Hong Y, Sun L, Zhu X, et al. GR gene polymorphism is associated with inter-subject variability in response to glucocorticoids in patients with myasthenia gravis. Eur J Neurol. 2016;23(8):1372–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Heckmann JM, Uwimpuhwe H, Ballo R, Kaur M, Bajic VB, Prince S. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis. Genes Immun. 2010;11(1):1–10.PubMedCrossRefGoogle Scholar
  120. 120.
    Coppedè F, Ricciardi R, Denaro M, De Rosa A, Provenzano C, Bartoccioni E, et al. Association of the DNMT3B -579G>T polymorphism with risk of thymomas in patients with myasthenia gravis. PLoS One. 2013;8(11):e80846.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kellermayer B, Polgar N, Pal J, Banati M, Maasz A, Kisfali P, et al. Association of myasthenia gravis with polymorphisms in the gene of histamine N-methyltransferase. Hum Immunol. 2013;74(12):1701–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Zagoriti Z, Lagoumintzis G, Perroni G, Papathanasiou G, Papadakis A, Ambrogi V, et al. Evidence for association of STAT4 and IL12RB2 variants with Myasthenia gravis susceptibility: what is the effect on gene expression in thymus? J Neuroimmunol. 2018;319:93–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Lopomo A, Ricciardi R, De Rosa A, Guida M, Maestri M, Lucchi M, et al. The thymidylate synthase enhancer region (TSER) polymorphism increases the risk of thymic lymphoid hyperplasia in patients with Myasthenia Gravis. Gene. 2018;642:376–80.PubMedCrossRefGoogle Scholar
  124. 124.
    Avidan N, Le Panse R, Harbo HF, Bernasconi P, Poulas K, Ginzburg E, et al. VAV1 and BAFF, via NFkappaB pathway, are genetic risk factors for myasthenia gravis. Ann Clin Transl Neurol. 2014;1(5):329–39.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72(6):927–35.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Na SJ, Lee JH, Kim SW, Kim DS, Shon EH, Park HJ, et al. Whole-genome analysis in Korean patients with autoimmune myasthenia gravis. Yonsei Med J. 2014;55(3):660–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Renton AE, Pliner HA, Provenzano C, Evoli A, Ricciardi R, Nalls MA, et al. A genome-wide association study of myasthenia gravis. JAMA Neurol. 2015;72(4):396–404.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Seldin MF, Alkhairy OK, Lee AT, Lamb JA, Sussman J, Pirskanen-Matell R, et al. Genome-wide association study of late-onset myasthenia gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and three distinct HLA associations. Mol Med. 2015;21:769–81.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Saruhan-Direskeneli G, Hughes T, Yilmaz V, Durmus H, Adler A, Alahgholi-Hajibehzad M, et al. Genetic heterogeneity within the HLA region in three distinct clinical subgroups of myasthenia gravis. Clin Immunol. 2016;166–167:81–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physiology, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey
  2. 2.Division of Rheumatology, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Center for Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborUSA

Personalised recommendations