Skip to main content

Influence of Physical and Structural Aspects of Food on Starch Digestion

  • Chapter
  • First Online:
  • 1479 Accesses

Abstract

High consumption of starch-based foods is associated with type 2 diabetes, which has developed into a worldwide epidemic. Further, type 2 diabetes is also closely linked with obesity, as obese individuals often develop exacerbated insulin resistance. As changing the dietary habits of consumers is difficult, efforts may be directed at increasing the content of resistant starch in foods. Precluding starch digestibility through food product formulation or processing may be a reasonable alternative to reduce starch digestibility, slowing-down associated glycemic response. In this chapter, we examine main steps of starch digestion in the body, using a mass transfer perspective, in order to get a better understanding about how food properties (food composition and structure) as well as food processing may influence starch digestion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam, S. A., Pentikäinen, S., Närväinen, J., Holopainen-Mantila, U., Poutanen, K., & Sozer, N. (2017). Effects of structural and textural properties of brittle cereal foams on mechanisms of oral breakdown and in vitro starch digestibility. Food Research International, 96, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • AlHasawi, F. M., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y. Y., Corradini, M. G., et al. (2017). In vitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocolloids, 70, 293–303.

    Article  CAS  Google Scholar 

  • Amaral, O., Guerreiro, C. S., Gomes, A., & Cravo, M. (2016). Resistant starch production in wheat bread: Effect of ingredients, baking conditions and storage. European Food Research and Technology, 242(10), 1747–1753.

    Article  CAS  Google Scholar 

  • American Association of Cereal Chemists. (2001). The definition of dietary fibre. Cereal Foods World, 46(3), 112–126.

    Google Scholar 

  • Baks, T., Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2008). Effect of pressure and temperature on the gelatinization of starch at various starch concentrations. Biomacromolecules, 9(1), 296–304.

    Article  CAS  PubMed  Google Scholar 

  • Behall, K. M., Scholfield, D., Hallfrisch, J., & Liljeberg-Elmstahl, H. (2006). Consumption of both resistant starch and B-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care, 29(5), 976–981.

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai, R. R., Dhital, S., & Gidley, M. J. (2016). Interactions among macronutrients in wheat flour determine their enzymic susceptibility. Food Hydrocolloids, 61, 415–425.

    Article  CAS  Google Scholar 

  • Bhattarai, R. R., Dhital, S., Wu, P., Chen, X., & Gidley, M. (2017). Digestion of isolated legume cells in a stomach-duodenum model: Three mechanisms limit starch and protein hydrolysis. Food & Function, 8, 2573–2582.

    Article  CAS  Google Scholar 

  • Biliaderis, C. G., Maurice, T. J., & Vose, J. R. (1980). Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of Food Science, 45(6), 1669–1674.

    Article  Google Scholar 

  • Birt, D. F., Boylston, T., Hendrich, S., Jane, J., Hollis, J., Li, L., et al. (2013). Resistant starch: Promise for improving human health. American Society for Nutrition, 4, 587–601.

    CAS  Google Scholar 

  • Bjorck, I., Granfeldt, Y., Liljeberg, H., Tovar, J., & Asp, N. (1994). Food properties affecting the digestion and absorption of carbohydrates. American Journal of Clinical Nutrition, 59, 699S–705S.

    Article  CAS  PubMed  Google Scholar 

  • Bjorck, I., Liljeberg, H., & Ostman, E. (2000). Low glycaemic-index foods. The British Journal of Nutrition, 83(Suppl 1), S149–S155.

    CAS  PubMed  Google Scholar 

  • Bornet, F., Bizais, Y., Bruley Des Varannes, S., Pouliquen, B., Delort Laval, J., & Galmiche, J. (1990). Gastric emptying rate controls plasma responses to starch in healthy humans. British Journal of Nutrition, 63, 207–220.

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst, G. M., Ferrua, M. J., & Singh, R. P. (2015). A proposed food breakdown classification system to predict food behavior during gastric digestion. Journal of Food Science, 80(5), R924–R934.

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst, G. M., & Singh, R. P. (2012). Bolus formation and disintegration during digestion of food carbohydrates. Comprehensive Reviews in Food Science and Food Safety, 11(2), 101–118.

    Article  CAS  Google Scholar 

  • Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in vitro bread bolus digestion with varying oral and gastric digestion parameters. Food Biophysics, 8(1), 50–59.

    Article  Google Scholar 

  • Bornhorst, G. M., & Singh, R. P. (2014). Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annual Review of Food Science and Technology, 5, 111–132.

    Article  CAS  PubMed  Google Scholar 

  • Bouchon, P., & Aguilera, J. M. (2001). Microstructural analysis of frying potatoes. International Journal of Food Science and Technology, 36, 669–676.

    Article  CAS  Google Scholar 

  • Bouchon, P., & Pyle, D. L. (2005). Modelling oil absorption during post-frying cooling I: Model development. Food and Bioproducts Processing, 83(4), 253–260 Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0960308505704971

    Article  Google Scholar 

  • Brennan, C. S., Samyue, E., & Abbot, N. (2004). Evaluation of starch degradation and textural characteristics of dietary fiber enriched biscuits. International Journal of Food Properties, 7(3), 647–657.

    Article  Google Scholar 

  • Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α-amylase and starch digestion: An interesting marriage. Starch/Staerke, 63(7), 395–405.

    Article  CAS  Google Scholar 

  • Chen, J., Khandelwal, N., Liu, Z., & Funami, T. (2013). Influences of food hardness on the particle size distribution of food boluses. Archives of Oral Biology, 58(3), 293–298.

    Article  PubMed  Google Scholar 

  • Chen, P., Wang, K., Kuang, Q., Zhou, S., Wang, D., & Liu, X. (2016). Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. International Journal of Biological Macromolecules, 87, 28–33.

    Article  CAS  PubMed  Google Scholar 

  • Contardo, I., Parada, J., Leiva, A., & Bouchon, P. (2016). The effect of vacuum frying on starch gelatinization and its in vitro digestibility in starch-gluten matrices. Food Chemistry, 197, 353–358. https://doi.org/10.1016/j.foodchem.2015.10.028

    Article  CAS  PubMed  Google Scholar 

  • Contardo, I., Villalón, M., & Bouchon, P. (2018). In vivo study on the slow release of glucose in vacuum fried matrices. Food Chemistry, 245, 432–438.

    Article  CAS  PubMed  Google Scholar 

  • Cottrell, J. E., Duffus, C. M., Paterson, L., & Mackay, G. R. (1995). Properties of potato starch: Effects of genotype and growing conditions. Phytochemistry, 40(4), 1057–1064.

    Article  CAS  Google Scholar 

  • Cui, R., & Oates, C. G. (1999). The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chemistry, 65(4), 417–425.

    Article  CAS  Google Scholar 

  • De la Hera, E., Rosell, C. M., & Gomez, M. (2014). Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chemistry, 151, 526–531.

    Article  PubMed  CAS  Google Scholar 

  • De Sales, P. M., De Souza, P. M., Simeoni, L. A., Magalhães, P. D. O., & Silveira, D. (2012). α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. Journal of Pharmacy and Pharmaceutical Sciences, 15(1), 141–183.

    Article  PubMed  Google Scholar 

  • Delcour, J. A., Vansteelandt, J., Hythier, M. C., Abécassis, J., Sindic, M., & Deroanne, C. (2000). Fractionation and reconstitution experiments provide insight into the role of starch gelatinization and pasting properties in pasta quality. Journal of Agricultural and Food Chemistry, 48(9), 3774–3778.

    Article  CAS  PubMed  Google Scholar 

  • Dhital, S., Dolan, G., Stokes, J. R., & Gidley, M. J. (2014). Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides. Food & Function, 5(3), 579–586.

    Article  CAS  Google Scholar 

  • Dhital, S., Warren, F. J., Butterworth, P. J., Ellis, P. R., & Gidley, M. J. (2017). Mechanisms of starch digestion by α-amylase—Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57(5), 875–892.

    Article  CAS  PubMed  Google Scholar 

  • Dona, A. C., Pages, G., Gilbert, R. G., & Kuchel, P. W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers, 80(3), 599–617.

    Article  CAS  Google Scholar 

  • Drechsler, K. C., & Ferrua, M. J. (2016). Modelling the breakdown mechanics of solid foods during gastric digestion. Food Research International, 88, 181–190.

    Article  CAS  Google Scholar 

  • Dueik, V., & Bouchon, P. (2011). Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends. Journal of Food Science, 76(2), 188–195.

    Article  CAS  Google Scholar 

  • Ekström, L. M. N. K., Henningsson Bok, E. A. E., Sjöö, M. E., & Östman, E. M. (2017). Oat β-glucan containing bread increases the glycaemic profile. Journal of Functional Foods, 32, 106–111.

    Article  CAS  Google Scholar 

  • Eliasson, A. (1980). Effect of water content on the gelatinization of wheat starch. Starch – Stärke, 32(8), 270–272.

    Article  CAS  Google Scholar 

  • Engelen, L., Fontijn-Tekamp, A., & Van Der Bilt, A. (2005). The influence of product and oral characteristics on swallowing. Archives of Oral Biology, 50(8), 739–746.

    Article  PubMed  Google Scholar 

  • Englyst, K. N., Englyst, H. N., Hudson, G. J., Cole, T. J., & Cummings, J. H. (1999). Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. The American Journal of Clinical Nutrition, 69(3), 448–454.

    Article  CAS  PubMed  Google Scholar 

  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(2), S33–S50.

    PubMed  Google Scholar 

  • Fabek, H., Messerschmidt, S., Brulport, V., & Goff, H. D. (2014). The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocolloids, 35, 718–726.

    Article  CAS  Google Scholar 

  • Fardet, A., Hoebler, C., Bouchet, B., Gallant, D. J., & Barry, J. L. (1998). Involvement of the protein network in the in vitro degradation of starch from spaghetti and lasagne: A microscopic and enzymic study. Journal of Cereal Science, 27, 133–145.

    Article  Google Scholar 

  • Feinglos, M. N., Gibb, R. D., Ramsey, D. L., Surwit, R. S., & McRorie, J. W. (2013). Psyllium improves glycemic control in patients with type-2 diabetes mellitus. Bioactive Carbohydrates and Dietary Fibre, 1(2), 156–161.

    Article  CAS  Google Scholar 

  • Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395–402.

    Article  CAS  Google Scholar 

  • Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931–942.

    Article  CAS  Google Scholar 

  • Gao, J., Wong, J. X., Lim, J. C. S., Henry, J., & Zhou, W. (2015). Influence of bread structure on human oral processing. Journal of Food Engineering, 167, 147–155.

    Article  Google Scholar 

  • Garayo, J., & Moreira, R. (2002). Vacuum frying of potato chips. Journal of Food Engineering, 55(2), 181–191.

    Article  Google Scholar 

  • García-Alonso, A., & Goñi, I. (2000). Effect of processing on potato starch: In vitro availability and glycaemic index. Die Nahrung, 44(1), 19–22.

    Article  PubMed  Google Scholar 

  • Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437.

    Article  Google Scholar 

  • Gouseti, O., Jaime-Fonseca, M. R., Fryer, P. J., Mills, C., Wickham, M. S. J., & Bakalis, S. (2014). Hydrocolloids in human digestion: Dynamic in-vitro assessment of the effect of food formulation on mass transfer. Food Hydrocolloids, 42(P3), 378–385.

    Article  CAS  Google Scholar 

  • Guyton, A., & Hall, J. (2006). Textbook of medical physiology. Physiology (11th ed.). Philadelphia, PA: Elsevier Saunders.

    Google Scholar 

  • Hasjim, J., Ai, Y., & Jane, J. (2013). Novel applications of amylose-lipid complex as resistant starch type 5. In Y.‐. C. Shi & C. C. Maningat (Eds.), Resistant starch (pp. 79–94). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Heaton, K. W., Marcus, S. N., Emmet, P. M., & Bolton, C. H. (1988). Particle-size of wheat, maize, and oat test meals – Effects on plasma-glucose and insulin responses and on the rate of starch digestion in vitro. American Journal of Clinical Nutrition, 47(4), 675–682.

    Article  CAS  PubMed  Google Scholar 

  • Heo, S. J., Hwang, J. Y., Choi, J. I., Han, J. S., Kim, H. J., & Jeon, Y. J. (2009). Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent a-glucosidase and a-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology, 615(1–3), 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Hesso, N., Loisel, C., Chevallier, S., Le-Bail, A., Queveau, D., Pontoire, B., et al. (2015). Monitoring cake baking by studying different ingredient interactions: From a model system to a real system. Food Hydrocolloids, 51, 7–15.

    Article  CAS  Google Scholar 

  • Hoebler, C., Devaux, M., Karinthi, A., Belleville, C., & Barry, J. (2000). Particle size of solid food after human mastication and in vitro simulation of oral breakdown. International Journal of Food Sciences and Nutrition, 51, 353–366.

    Article  CAS  PubMed  Google Scholar 

  • Hoebler, C., Karinthi, A., Devaux, M. F., Guillon, F., Gallant, D. J., Bouchet, B., et al. (1998). Physical and chemical transformations of cereal food during oral digestion in human subjects. British Journal of Nutrition, 80(5), 429–436.

    Article  CAS  PubMed  Google Scholar 

  • Holm, J., Lundquist, J., Björck, I., Eliasson, A.-C., & Asp, N.-G. (1988). Degree in vitro, of starch gelatinization, and metabolic response in rats. American Journal of Clinical Nutrition, 47, 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  • Jaime-Fonseca, M. R., Gouseti, O., Fryer, P. J., Wickham, M. S. J., & Bakalis, S. (2016). Digestion of starch in a dynamic small intestinal model. European Journal of Nutrition, 55(8), 2377–2388.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, A. L., Jenkins, D. J. A., Zdravkovic, U., Würsch, P., & Vuksan, V. (2002). Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. European Journal of Clinical Nutrition, 56(7), 622–628.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E., Petrie, J., Motoi, L., Morgenstern, M., Sutton, K., Mishra, S., et al. (2008). Effect of structural and physicochemical characteristics of the protein matrix in pasta on in vitro starch digestibility. Food Biophysics, 3(2), 229–234.

    Article  Google Scholar 

  • Kong, F., & Singh, R. P. (2008). Disintegration of solid foods in human stomach. Journal of Food Science R: Concise Reviews and Hypotheses in Food Science, 73(5), 67–80.

    Article  CAS  Google Scholar 

  • Kong, F., & Singh, R. P. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 75(9), E627–E635.

    Article  CAS  PubMed  Google Scholar 

  • Kozu, H., Kobayashi, I., Nakajima, M., Uemura, K., Sato, S., & Ichikawa, S. (2010). Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics, 5(4), 330–336.

    Article  Google Scholar 

  • Lankisch, M., Layer, P., Rizza, R. A., & DiMagno, E. P. (1998). Acute postprandial gastrointestinal and metabolic effects of wheat amylase inhibitor (WAI) in normal, obese, and diabetic humans. Pancreas, 17(2), 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bleis, F., Chaunier, L., Montigaud, P., & Della Valle, G. (2016). Destructuration mechanisms of bread enriched with fibers during mastication. Food Research International, 80, 1–11.

    Article  Google Scholar 

  • Lelievre, J., & Liu, H. (1994). A review of thermal analysis studies of starch gelatinization. Thermochimica Acta, 246(2), 309–315.

    Article  CAS  Google Scholar 

  • Liu, S., Manson, J. E., Stampfer, M. J., Hu, F. B., Giovannucci, E., Colditz, G. A., et al. (2000). A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. American Journal of Public Health, 90(9), 1409–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., & Chou, C. J. (2008). Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. Journal of Medicinal Chemistry, 51(12), 3555–3561.

    Article  CAS  PubMed  Google Scholar 

  • Mackley, M. R., Tock, C., Anthony, R., Butler, S. a., Chapman, G., & Vadillo, D. C. (2013). The rheology and processing behavior of starch and gum-based dysphagia thickeners. Journal of Rheology, 57(6), 1533.

    Article  CAS  Google Scholar 

  • Mandel, A., & Breslin, P. (2012). High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults 1–3. The Journal of Nutrition, 142, 853–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marciani, L., Gowland, P. a., Spiller, R. C., Manoj, P., Moore, R. J., Young, P., et al. (2001). Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280(6), G1227–G1233.

    Article  CAS  PubMed  Google Scholar 

  • Mariscal, M., & Bouchon, P. (2008). Comparison between atmospheric and vacuum frying of apple slices. Food Chemistry, 107(4), 1561–1569.

    Article  CAS  Google Scholar 

  • Mennah-Govela, Y. A., & Bornhorst, G. M. (2016). Mass transport processes in orange-fleshed sweet potatoes leading to structural changes during in vitro gastric digestion. Journal of Food Engineering, 191, 48–57.

    Article  CAS  Google Scholar 

  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food – An international consensus. Food Function, 5(6), 1113–1124. Retrieved from http://xlink.rsc.org/?DOI=C3FO60702J

    Article  CAS  PubMed  Google Scholar 

  • Moritaka, H., & Nakazawa, F. (2009). The rheological and swallowing properties of rice starch. Food Science Research, 15(2), 133–140.

    Article  CAS  Google Scholar 

  • Nalin, T., Venema, K., Weinstein, D. A., de Souza, C. F. M., Perry, I. D. S., van Wandelen, M. T. R., et al. (2015). In vitro digestion of starches in a dynamic gastrointestinal model: An innovative study to optimize dietary management of patients with hepatic glycogen storage diseases. Journal of Inherited Metabolic Disease, 38(3), 529–536.

    Article  CAS  PubMed  Google Scholar 

  • Nyambe-Silavwe, H., & Williamson, G. (2016). Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: A randomised, controlled, single-blind, cross-over intervention. British Journal of Nutrition, 116(3), 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Oh, I. K., Bae, I. Y., & Lee, H. G. (2014). In vitro starch digestion and cake quality: Impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 63, 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Ohishi, K., Kasai, M., Shimada, A., & Hatae, K. (2007). Effects of acetic acid on the rice gelatinization and pasting properties of rice starch during cooking. Food Research International, 40(2), 224–231.

    Article  CAS  Google Scholar 

  • Ovalle, N., Cortés, P., & Bouchon, P. (2013). Understanding microstructural changes of starch during atmospheric and vacuum heating in water and oil through online in situ vacuum hot-stage microscopy. Innovative Food Science & Emerging Technologies, 17, 135–143.

    Article  CAS  Google Scholar 

  • Parada, J., & Aguilera, J. M. (2011a). Microstructure, mechanical properties, and starch digestibility of a cooked dough made with potato starch and wheat gluten. LWT – Food Science and Technology, 44(8), 1739–1744.

    Article  CAS  Google Scholar 

  • Parada, J., & Aguilera, J. M. (2011b). Review: Starch matrices and the glycemic response. Food Science and Technology International, 17(3), 187–204.

    Article  CAS  PubMed  Google Scholar 

  • Parada, J., & Santos, J. L. (2016). Interactions between starch, lipids, and proteins in foods: Microstructure control for glycemic response modulation. Critical Reviews in Food Science and Nutrition, 56(14), 2362–2369.

    Article  CAS  PubMed  Google Scholar 

  • Pareyt, B., & Delcour, J. A. (2008). The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: A review on sugar-snap cookies. Critical Reviews in Food Science and Nutrition, 48(November 2014), 824–839.

    Article  CAS  PubMed  Google Scholar 

  • Ranawana, V., Monro, J. A., Mishra, S., & Henry, C. J. K. (2010). Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutrition Research, 30(4), 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Robin, F., Heindel, C., Pineau, N., Srichuwong, S., & Lehmann, U. (2016). Effect of maize type and extrusion-cooking conditions on starch digestibility profiles. International Journal of Food Science & Technology, 51(6), 1319–1326.

    Article  CAS  Google Scholar 

  • Roder, N., Gerard, C., Verel, A., Bogracheva, T. Y., Hedley, C. L., Ellis, P. R., et al. (2009). Factors affecting the action of α-amylase on wheat starch: Effects of water availability. An enzymic and structural study. Food Chemistry, 113(2), 471–478.

    Article  CAS  Google Scholar 

  • Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch – A review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Schirmer, M., Zeller, J., Krause, D., Jekle, M., & Becker, T. (2014). In situ monitoring of starch gelatinization with limited water content using confocal laser scanning microscopy. European Food Research and Technology, 239(2), 247–257.

    Article  CAS  Google Scholar 

  • Seneviratne, H. D., & Biliaderis, C. G. (1991). Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science, 13(2), 129–143.

    Article  CAS  Google Scholar 

  • Singh, N., Singh, J., Kaur, L., Sodhi, N., & Gill, B. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219–231.

    Article  CAS  Google Scholar 

  • Slaughter, S. L., Butterworth, P. J., & Ellis, P. R. (2001). Mechanisms of the action of porcine pancreatic α-amylase on native and heat treated starches from various botanical sources. Starch – Advances in Structure and Function, 1525, 110–115.

    Google Scholar 

  • Slavin, J. (2004). Whole grains and human health. Nutrition Research Reviews, 17(1), 99–110.

    Article  PubMed  Google Scholar 

  • Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes – A boon to human nutrition. Trends in Food Science and Technology, 14(12), 507–518.

    Article  CAS  Google Scholar 

  • Tharanathan, M., & Tharanathan, R. N. (2001). Resistant starch in wheat-based products: Isolation and characterisation. Journal of Cereal Science, 34, 73–84.

    Article  CAS  Google Scholar 

  • Thondre, P. S., Shafat, A., & Clegg, M. E. (2013). Molecular weight of barley b-glucan influences energy expenditure, gastric emptying and glycaemic response in human subjects. British Journal of Nutrition, 110, 2173–2179.

    Article  CAS  PubMed  Google Scholar 

  • Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031–1064.

    Article  CAS  PubMed  Google Scholar 

  • Van Wey, A. S., Cookson, A. L., Roy, N. C., McNabb, W. C., Soboleva, T. K., Wieliczko, R. J., et al. (2014). A mathematical model of the effect of pH and food matrix composition on fluid transport into foods: An application in gastric digestion and cheese brining. Food Research International, 57, 34–43.

    Article  CAS  Google Scholar 

  • Villemejane, C., Wahl, R., Aymard, P., Denis, S., & Michin, C. (2015). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): Viscosity measurement and prediction. Food Chemistry, 182, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Luo, H., Zhang, J., Zhang, Y., He, Z., & Wang, S. (2014). Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. Journal of Agricultural and Food Chemistry, 62(16), 3636–3643.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. P., Zeng, A. W., Liu, Z., & Yuan, X. G. (2006). Kinetics of glucoamylase hydrolysis of corn starch. Journal of Chemical Technology and Biotechnology, 81(4), 727–729.

    Article  CAS  Google Scholar 

  • Warren, F. J., Zhang, B., Waltzer, G., Gidley, M. J., & Dhital, S. (2015). The interplay of alpha-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydrate Polymers, 117, 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Wickham, M. J. S., Faulks, R. M., Mann, J., & Mandalari, G. (2012). The design, operation, and application of a dynamic gastric model. Dissolution Technologies, 19(3), 15–22.

    Article  CAS  Google Scholar 

  • Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24(2), 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, G., Belshaw, N. J., Self, D. J., Noel, T. R., Ring, S. G., Cairns, P., et al. (1992). Hydrolysis of A- and B-type crystalline polymorphs of starch by a-amylase, b-amylase and glucoamylase 1. Carbohydrate Polymers, 18(3), 179–187.

    Article  CAS  Google Scholar 

  • Würsch, P., & Pi-Sunyer, X. (1997). The role of viscous soluble fiber in the metabolic control of diabetes. Diabetes Care, 20(11), 1774–1780.

    Article  PubMed  Google Scholar 

  • Zhang, G., & Hamaker, B. R. (2016). The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition, 57, 3807–3817.

    Article  CAS  Google Scholar 

  • Zhang, P., Whistler, R., BeMiller, J., & Hamaker, B. (2005). Banana starch: Production, physicochemical properties, and digestibility – A review. Carbohydrate Polymers, 59(4), 443–458.

    Article  CAS  Google Scholar 

  • Zhu, Y., Hsu, W. H., & Hollis, J. H. (2013). The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate. PLoS One, 8(6), 6–11.

    Article  Google Scholar 

  • Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology, 43(8), 1410–1423.

    Article  CAS  Google Scholar 

  • Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(December 2001), 782–787.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bouchon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Contardo, I., Bouchon, P. (2019). Influence of Physical and Structural Aspects of Food on Starch Digestion. In: Gouseti, O., Bornhorst, G., Bakalis, S., Mackie, A. (eds) Interdisciplinary Approaches to Food Digestion. Springer, Cham. https://doi.org/10.1007/978-3-030-03901-1_15

Download citation

Publish with us

Policies and ethics