Kinetics of α-Amylase Action on Starch

  • Peter J. ButterworthEmail author
  • Peter R. Ellis


Starch is a major source of carbohydrate in human diets and its over-consumption can contribute to the development of obesity and to an increased risk of cardiovascular disease and type 2 diabetes. Various starch-rich foods in the human diet are digested at different rates and to different extents. Understanding of the reasons for these observed differences should allow for development of functional foods that are digested relatively slowly. Enzyme kinetic studies of α-amylase action on starch in vitro are valuable for predicting how starch is digested in vivo and for providing understanding of how starch structure and hydrothermal processing (cooking) affect digestibility. Since starch consumed in foods such as cereal products, legumes and root vegetables has usually been subjected to commercial and/or domestic cooking, knowledge of the changes in the kinetics of amylolysis subsequent to starch processing provides important and relevant dietary information.


Starch amylolysis In vitro digestion Enzyme kinetics Relation to in vivo digestion 


  1. Baldwin, A. J., Egan, D. L., Warren, F. J., Barker, P. D., Dobson, C. M., Butterworth, P. J., et al. (2015). Investigating the mechanisms of amylolysis of starch granules by solution-state NMR. Biomacromolecules, 16, 1614–1621.CrossRefGoogle Scholar
  2. Brand-Miller, J. C., Holt, S. H., Pawlak, D. B., & McMillan, J. (2002). Glycemic index and obesity. The American Journal of Clinical Nutrition, 76, 281S–285S.CrossRefGoogle Scholar
  3. Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α-amylase and starch digestion: An interesting marriage. Starch/Starke, 63, 395–405.CrossRefGoogle Scholar
  4. Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H., & Ellis, P. R. (2012). Analysis of starch amylolysis using plots for first-order kinetics. Carbohydrate Polymers, 87, 2189–2197.CrossRefGoogle Scholar
  5. Canani, R. B., Di Constanzo, M., Leone, I., Pefata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17, 1519–1528.CrossRefGoogle Scholar
  6. Dhital, S., Gidley, M. J., & Warren, F. J. (2015). Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implication. Carbohydrate Polymers, 123, 305–312.CrossRefGoogle Scholar
  7. Dhital, S., Shrestha, A. K., & Gidley, M. J. (2010). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82, 480–488.CrossRefGoogle Scholar
  8. Dhital, S., Warren, F. R., Butterworth, P. J., Ellis, P. R., & Gidley, M. J. (2017). Mechanisms of starch digestion by α-amylase: Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57(5), 875–892.CrossRefGoogle Scholar
  9. Dona, A. C., Pages, G., Gilbert, R. G., & Kuchel, P. W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterize oligosaccharide or glucose release. Carbohydrate Polymers, 80, 599–617.CrossRefGoogle Scholar
  10. Edwards, C. H., Warren, F. J., Milligan, P. J., Butterworth, P. J., & Ellis, P. R. (2014). A novel method for classifying starch digestion by modeling the amylolysis of plant foods using first-order enzyme kinetic principles. Food and Function, 5, 2751–2758.CrossRefGoogle Scholar
  11. Ellis, P. R., Apling, A. C., Leeds, A. R., & Bolster, N. R. (1981). Guar bread: Acceptability and efficacy combined. Studies on blood glucose, serum insulin and satiety in normal subjects. The British Journal of Nutrition, 46, 267–276.CrossRefGoogle Scholar
  12. Elodi, P., Mora, S., & Krysteva, M. (1972). Investigation of the active centre of porcine pancreatic amylase. European Journal of Biochemistry, 24, 577–582.CrossRefGoogle Scholar
  13. Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 33–50.Google Scholar
  14. Fersht, A. (1999). Enzyme structure and mechanism (pp. 110–111). New York: W.H. Freeman.Google Scholar
  15. Goni, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17, 427–437.CrossRefGoogle Scholar
  16. Henrissat, B., & Davies, G. J. (2000). Glycoside hydrolases and glycosyltransferases: Families, modules and implications for genomics. Plant Physiology, 124, 1515–1519.CrossRefGoogle Scholar
  17. Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, E. P., Gilbert, E. P., et al. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organization and amylase digestibility. Carbohydrate Polymers, 75, 236–245.CrossRefGoogle Scholar
  18. Kansou, K., Buleon, A., Gerard, C., & Rolland-Sabaté, A. (2015). Multivariate model to characterize relations between maize mutant starches and hydrolysis kinetics. Carbohydrate Polymers, 133, 497–506.CrossRefGoogle Scholar
  19. Kopelman, R. (1988). Fractal reaction kinetics. Science, 241(4873), 1620–1626.CrossRefGoogle Scholar
  20. Kung, J.-F. T., Hanrahan, V. M., & Caldwell, M. L. (1953). A comparison of the action of several alpha amylases upon a linear fraction from corn starch. Journal of the American Chemical Society, 75, 5548–5554.CrossRefGoogle Scholar
  21. Mahasukhonthachat, K., Sopade, P. A., & Gidley, M. J. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, 96, 18–28.CrossRefGoogle Scholar
  22. McCroskey, R., Chang, T., David, H., & Winn, E. (1982). p-Nitrophenylglycosides as substrates for measurement of amylase in serum and urine. Clinical Chemistry, 28, 1787–1791.PubMedGoogle Scholar
  23. McGregor, E. A., Janecek, S., & Svensson, B. (2011). Relationship of sequence structure to specificity in the α-amylase family of enzymes. Biochimica et Biophysica Acta, 1546, 1–20.Google Scholar
  24. McLaren, A. D. (1963). Enzyme reactions in structurally restricted systems IV. The digestion of insoluble substrates by hydrolytic enzymes. Enzymologia, 26, 237–246.PubMedGoogle Scholar
  25. Moretti, R., & Torson, J. S. (2008). A comparison of sugar indicators enables a universal high throughput sugar-1-phosphate nucleotidyltransferase assay. Analytical Biochemistry, 377(2), 251–258.CrossRefGoogle Scholar
  26. Patel, H., Royall, P. G., Gaisford, S., Williams, G. R., Edwards, C. H., Warren, F. J., et al. (2016). Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydrate Polymers, 164, 154–161.CrossRefGoogle Scholar
  27. Poulsen, B. R., Ruiter, G., Visser, J., Jorgen, J., Iversen, J. J. L. (2003). Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture. Biotechnology Letters, 25, 565–571.CrossRefGoogle Scholar
  28. Robyt, J. F., & French, D. (1967). Multiple attack hypothesis of α-amylase: Action of porcine pancreatic, human salivary and Aspergillus oryzae α-amylases. Archives of Biochemistry and Biophysics, 122, 8–16.CrossRefGoogle Scholar
  29. Seigner, C., Prodanov, E., & Marchis-Mouren, C. (1995). On porcine pancreatic α-amylase action: Kinetic evidence for the binding of two maltooligosaccharides (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. European Journal of Biochemistry, 148, 161–168.CrossRefGoogle Scholar
  30. Seigner, C., Proganov, E., & Marchis-Mouren, G. (1987). The determination of substrate binding energies of porcine pancreatic α-amylase by comparing hydrolytic activity towards substrates. Biochimica et Biophysica Acta, 913, 200–209.CrossRefGoogle Scholar
  31. Slaughter, S. L., Ellis, P. R., & Butterworth, P. J. (2001). An investigation of the action of porcine pancreatic α-amylase on native and gelatinized starches. Biochimica et Biophysica Acta, 1525, 29–36.CrossRefGoogle Scholar
  32. Slaughter, S. L., Ellis, P. R., Jackson, E. C., & Butterworth, P. J. (2002). The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochimica et Biophysica Acta, 1571, 55–63.CrossRefGoogle Scholar
  33. Smith, B. W., & Roe, J. H. (1949). A photometric method for the determination of α-amylase in blood and urine with use of the starch-iodine color. The Journal of Biological Chemistry, 179, 53–59.PubMedGoogle Scholar
  34. Walker, W. J., & Hope, P. M. (1963). The action of some α-amylases on starch granules. The Biochemical Journal, 86, 452–462.CrossRefGoogle Scholar
  35. Warren, F. J., Butterworth, P. J., & Ellis, P. R. (2012). Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch. Carbohydrate Research, 358, 67–71.CrossRefGoogle Scholar
  36. Warren, F. J., Butterworth, P. J., & Ellis, P. R. (2013). The surface structure of a complex substrate revealed by enzyme kinetics and Freundlich constants for α-amylase interaction with the surface of starch. Biochimica et Biophysica Acta, 1830, 3095–3101.CrossRefGoogle Scholar
  37. Warren, F. J., Royall, P. G., Gaisford, S., Butterworth, P. J., & Ellis, P. R. (2011). Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydrate Polymers, 86, 1038–1047.CrossRefGoogle Scholar
  38. Warren, F. J., Zhang, B., Waltzer, G., Gidley, M. J., & Dhital, S. (2015). The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydrate Polymers, 117, 192–200.CrossRefGoogle Scholar
  39. Zhang, X., Caner, C., Kwan, E., Li, C., Brayer, G. D., & Withers, S. G. (2016). Evaluation of the significance of starch surface binding sites on human pancreatic α-amylase. Biochemistry, 55, 6000–6009.CrossRefGoogle Scholar
  40. Zou, W., Sissons, M., Gidley, M. J., Gilbert, R. G., & Warren, F. J. (2015). Combined technique for characterizing pasta structure reveals how the gluten network slows enzyme digestion. Food Chemistry, 188, 559–568.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Life Sciences, Department of Nutritional Sciences, Biopolymers GroupKing’s College LondonLondonUK

Personalised recommendations