Skip to main content

Extremely Randomized CNets for Multi-label Classification

  • Conference paper
  • First Online:
AI*IA 2018 – Advances in Artificial Intelligence (AI*IA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11298))

  • 946 Accesses

Abstract

Multi-label classification (MLC) is a challenging task in machine learning consisting in the prediction of multiple labels associated with a single instance. Promising approaches for MLC are those able to capture label dependencies by learning a single probabilistic model—differently from other competitive approaches requiring to learn many models. The model is then exploited to compute the most probable label configuration given the observed attributes. Cutset Networks (CNets) are density estimators leveraging context-specific independencies providing exact inference in polynomial time. The recently introduced Extremely Randomized CNets (XCNets) reduce the structure learning complexity making able to learn ensembles of XCNets outperforming state-of-the-art density estimators. In this paper we employ XCNets for MLC by exploiting efficient Most Probable Explanations (MPE). An experimental evaluation on real-world datasets shows how the proposed approach is competitive w.r.t. other sophisticated methods for MLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/nicoladimauro/mlxcnet.

  2. 2.

    http://mulan.sourceforge.net/.

  3. 3.

    http://meka.sourceforge.net/.

  4. 4.

    http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.

  5. 5.

    Both have be run with -d 0.1, leaving all the other parameters set to default value.

  6. 6.

    RAkEL, resp. CC, has been executed with Support Vector Machines with polynomial kernel, resp. with C4.5 decision trees, as base classifier.

  7. 7.

    We executed the code avalible at https://github.com/giulianavll/MLC-SPN to reproduce the results reported in this paper. The algorithm used for learning the structure of SPNs corresponds to that reported in [26].

References

  1. Antonucci, A., Corani, G., Mauá, D.D., Gabaglio, S.: An ensemble of Bayesian networks for multilabel classification. In: IJCAI, pp. 1220–1225 (2013)

    Google Scholar 

  2. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  3. Cano, A., Luna, J.M., Gibaja, E.L., Ventura, S.: LAIM discretization for multi-label data. Inf. Sci. 330, 370–384 (2016)

    Article  Google Scholar 

  4. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)

    Article  MathSciNet  Google Scholar 

  5. Conaty, D., de Campos, C.P., Mauá, D.D.: Approximation complexity of maximum a posteriori inference in sum-product networks. In: UAI (2017)

    Google Scholar 

  6. Corani, G., Antonucci, A., Mauá, D.D., Gabaglio, S.: Trading off speed and accuracy in multilabel classification. In: van der Gaag, L.C., Feelders, A.J. (eds.) PGM 2014. LNCS (LNAI), vol. 8754, pp. 145–159. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11433-0_10

    Chapter  Google Scholar 

  7. Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: ICML, pp. 279–286 (2010)

    Google Scholar 

  8. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88(1), 5–45 (2012)

    Article  MathSciNet  Google Scholar 

  9. Di Mauro, N., Vergari, A., Basile, T.M.A.: Learning Bayesian random cutset forests. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 122–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25252-0_13

    Chapter  Google Scholar 

  10. Di Mauro, N., Vergari, A., Basile, T.M.A., Esposito, F.: Fast and accurate density estimation with extremely randomized cutset networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 203–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_13

    Chapter  Google Scholar 

  11. Di Mauro, N., Vergari, A., Esposito, F.: Learning accurate cutset networks by exploiting decomposability. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 221–232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_17

    Chapter  Google Scholar 

  12. Di Mauro, N., Vergari, A., Esposito, F.: Multi-label classification with cutset networks. In: PGM, vol. 52, pp. 147–158 (2016)

    Google Scholar 

  13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. Llerena, J.V., Mauá, D.D.: On using sum-product networks for multi-label classification. In: BRACIS, pp. 25–30 (2017)

    Google Scholar 

  15. Lowd, D., Rooshenas, A.: The libra toolkit for probabilistic models. JMLR 16, 2459–2463 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Madjarov, G., Kocev, D., Gjorgjevikj, D., Deroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  17. Meila, M., Jordan, M.I.: Learning with mixtures of trees. JMLR 1, 1–48 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Peharz, R., Gens, R., Pernkopf, F., Domingos, P.: On the latent variable interpretation in sum-product networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2030–2044 (2017)

    Article  Google Scholar 

  19. Poon, H., Domingos, P.: Sum-product network: a new deep architecture. In: NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  20. Rahman, T., Gogate, V.: Learning ensembles of cutset networks. In: AAAI (2016)

    Google Scholar 

  21. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: a simple, tractable, and scalable approach for improving the accuracy of Chow-Liu trees. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 630–645. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_40

    Chapter  Google Scholar 

  22. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    Chapter  Google Scholar 

  23. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302 (1996)

    Article  MathSciNet  Google Scholar 

  24. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  25. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn, pp. 667–685. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  26. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthening sum-product network structure learning. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 343–358. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa M. A. Basile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basile, T.M.A., Di Mauro, N., Esposito, F. (2018). Extremely Randomized CNets for Multi-label Classification. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics