Skip to main content

A Generalized Framework for Ontology-Based Data Access

  • Conference paper
  • First Online:
Book cover AI*IA 2018 – Advances in Artificial Intelligence (AI*IA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11298))

Abstract

The database (DB) landscape has been significantly diversified during the last decade, resulting in the emergence of a variety of non-relational (also called NoSQL) DBs, e.g., xml and json-document DBs, key-value stores, and graph DBs. To enable access to such data, we generalize the well-known ontology-based data access (OBDA) framework so as to allow for querying arbitrary data sources using sparql. We propose an architecture for a generalized OBDA system implementing the virtual approach. Then, to investigate feasibility of OBDA over non-relational DBs, we compare an implementation of an OBDA system over MongoDB, a popular json-document DB, with a triple store.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://couchdb.apache.org/.

  2. 2.

    https://docs.mongodb.org/manual/.

  3. 3.

    json, or JavaScript Object Notation, is a tree-shaped format for structuring data.

  4. 4.

    https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/.

  5. 5.

    An exception is the step that builds the returned rdf strings (IRIs and literals) from the constants retrieved from the DB.

  6. 6.

    http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/.

  7. 7.

    https://www.dropbox.com/sh/nz8dfas5ijpr76y/AACJzxHZUInrHi6Vq3Lk8f8ra?dl=0.

  8. 8.

    https://drill.apache.org/.

  9. 9.

    https://www.dremio.com/.

  10. 10.

    https://studio3t.com/whats-new/how-to-query-mongodb-with-sql/.

  11. 11.

    https://docs.mongodb.com/spark-connector/.

  12. 12.

    http://couchbase.com/.

  13. 13.

    https://asterixdb.apache.org/.

References

  1. Araujo, T.H.D., Agena, B.T., Braghetto, K.R., Wassermann, R.: OntoMongo - ontology-based data access for NoSQL. In: Proceedings of the OntoBras. CEUR, ceur-ws.org, vol. 1908 (2017)

    Google Scholar 

  2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5(2), 1–24 (2009)

    Article  Google Scholar 

  3. Botoeva, E., Calvanese, D., Cogrel, B., Xiao, G.: Expressivity and complexity of MongoDB queries. In: Proceedings of the ICDT. LIPIcs, vol. 98, pp. 9:1–9:22 (2018)

    Google Scholar 

  4. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8(3), 471–487 (2017)

    Article  Google Scholar 

  5. Calvanese, D., Liuzzo, P., Mosca, A., Remesal, J., Rezk, M., Rull, G.: Ontology-based data integration in EPNet: production and distribution of food during the Roman Empire. Eng. Appl. Artif. Intell. 51, 212–229 (2016)

    Article  Google Scholar 

  6. Chortaras, A., Stamou, G.: D2RML: Integrating heterogeneous data and web services into custom RDF graphs. In: Proceedings of the LDOW. CEUR, ceur-ws.org, vol. 2073 (2018)

    Google Scholar 

  7. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recommendation (2012). http://www.w3.org/TR/r2rml/

  8. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the LDOW. CEUR, ceur-ws.org, vol. 1184 (2014)

    Google Scholar 

  9. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02184-8_2

    Chapter  Google Scholar 

  10. Giese, M., et al.: Optique: zooming in on big data. IEEE Comput. 48(3), 60–67 (2015)

    Article  Google Scholar 

  11. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation (2013). http://www.w3.org/TR/sparql11-query

  12. Kontchakov, R., Rezk, M., Rodríguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering SPARQL queries over databases under OWL 2 QL entailment regime. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 552–567. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_35

    Chapter  Google Scholar 

  13. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the PODS (2002)

    Google Scholar 

  14. Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of relational and non-relational databases into RDF with xR2RML. In: Proceedings of the WEBIST, pp. 443–454 (2015)

    Google Scholar 

  15. Motik, B., Fokoue, A., Horrocks, I., Wu, Z., Lutz, C., Cuenca Grau, B.: OWL web ontology language profiles. W3C Recommendation (2009). http://www.w3.org/TR/owl-profiles/

  16. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ query language: configurable, unifying and semi-structured. CoRR Technical Report abs/1405.3631, arXiv.org (2014)

  17. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM TODS 34(3), 16:1–16:45 (2009)

    Article  Google Scholar 

  18. Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_35

    Chapter  Google Scholar 

  19. Roth, M.T., Schwarz, P.M.: Don’t scrap it, wrap it! A wrapper architecture for legacy data sources. In: Proceedings of the VLDB, pp. 266–275. Morgan Kaufmann (1997)

    Google Scholar 

  20. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materialization? In practice, both!. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 535–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_34

    Chapter  Google Scholar 

  21. Slepicka, J., Yin, C., Szekely, P.A., Knoblock, C.A.: KR2RML: an alternative interpretation of R2RML for heterogenous sources. In: Proceedings of the 6th International Workshop on Consuming Linked Data (COLD), co-located with ISWC. CEUR, ceur-ws.org, vol. 1426 (2015)

    Google Scholar 

  22. Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of the IJCAI. AAAI Press (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Calvanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botoeva, E., Calvanese, D., Cogrel, B., Corman, J., Xiao, G. (2018). A Generalized Framework for Ontology-Based Data Access. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics