Skip to main content

Calculating the O3 Instantaneous Longwave Radiative Impact from Satellite Observations

  • Chapter
  • First Online:

Abstract

Ozone is a key atmospheric substance for both chemistry and climate. Being a secondary species, its concentration is controlled by a number of different factors, such as precursors’ emission, sunlight and oxidizing agents. Its impact on atmospheric chemistry and radiative balance differs with altitude: in the lower troposphere ozone acts as a toxic pollutant, in the upper troposphere as a greenhouse gas (GHG) and finally in the stratosphere as a protection against harmful ultraviolet (UV) radiation. Ozone is in general a radiatively active gas for both solar (shortwave, SW) and terrestrial (longwave, LW) radiation [14], therefore it’s very important to acquire and understand its radiative impact for climate related studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series-55, Dover, Mineola, NY, USA (1972)

    Google Scholar 

  2. Aghedo, A.M., Bowman, K.W., Worden, H.M., Kulawik, S.S., Shindell, D.T., Lamarque, J.F., Faluvegi, G., Parrington, M., Jones, D.B.A., Rast, S.: The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models. J. Geophys. Res. 11, D01305 (2011). https://doi.org/10.1029/2010jd014243

    Article  Google Scholar 

  3. August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O’Carroll, A., Coppens, D., Munro, R., Calbet, X.: IASI on and Metop-A: operational level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. 113, 1340–1371 (2012). https://doi.org/10.1029/2010jd014243

    Article  Google Scholar 

  4. Bowman, K.W., Shindell, D.T., Worden, H.M., Lamarque, J.F., Young, P.J., Stevenson, D.S., Qu, Z., de la Torre, M., Bergmann, D., Cameron-Smith, P.J., Collins, W.J., Doherty, R., Dalsøren, S.B., Faluvegi, G., Folberth, G., Horowitz, L.W., Josse, B.M., Lee, Y.H., MacKenzie, I.A., Myhre, G., Nagashima, T., Naik, V., Plummer, D.A., Rumbold, S.T., Skeie, R.B., Strode, S.A., Sudo, K., Szopa, S., Voulgarakis, A., Zeng, G., Kulawik, S.S., Aghedo, A.M., Worden, J.R.: Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys. 13, 4057–4072 (2013). https://doi.org/10.5194/acp-13-4057-2013

    Article  Google Scholar 

  5. Boynard, A., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Turquety, S., George, M., Hadji-Lazaro, J., Keim, C., Meyer-Arnek, J.: Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations. Atmos. Chem. Phys. 9, 6255–6271 (2009). https://doi.org/10.5194/acp-9-6255-2009

    Article  Google Scholar 

  6. Boynard, A., Hurtmans, D., Koukouli, M.E., Goutail, F., Bureau, J., Safieddine, S., Lerot, C., Hadji-Lazaro, J., Pommereau, J.-P., Pazmino, A., Zyrichidou, I., Balis, D., Barbe, A., Mikhailenko, S.N., Loyola, D., Valks, P., Van Roozendael, M., Coheur, P.-F., Clerbaux, C.: Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements. Atmos. Meas. Tech. Discuss. (2016). https://doi.org/10.5194/amt-2016-11 (in review)

  7. Clarisse, L., R’Honi, Y., Coheur, P.-F., Hurtmans, D., Clerbaux, C.: Thermal infrared nadir observations of 24 atmospheric gases. Geophys. Res. Lett. 3, L10802 (2011). https://doi.org/10.1029/2011GL047271

    Article  Google Scholar 

  8. Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 9, 6041–6054 (2009). https://doi.org/10.5194/acp-9-6041-2009

    Article  Google Scholar 

  9. Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., Clerbaux, C.: IASI measurements of reactive trace species in biomass burning plumes. Atmos. Chem. Phys. 9, 5655–5667 (2009). https://doi.org/10.5194/acp-9-5655-2009

    Article  Google Scholar 

  10. Conley, A.J., Lamarque, J.-F., Vitt, F., Collins, W.D., Kiehl, J.: PORT, a CESM tool for the diagnosis of radiative forcing. Geosci. Model Dev. 6, 469–476 (2013). https://doi.org/10.5194/gmd-6-469-2013

    Article  Google Scholar 

  11. Doniki, S., Hurtmans, D., Clarisse, L., Clerbaux, C., Worden, H.M., Bowman, K.W., Coheur, P.-F.: Instantaneous longwave radiative impact of ozone: an application on IASI/MetOp observations. Atmos. Chem. Phys. 15, 12971–12987 (2015). https://doi.org/10.5194/acp-15-12971-2015

    Article  Google Scholar 

  12. Dufour, G., Eremenko, M., Griesfeller, A., Barret, B., LeFlochmoën, E., Clerbaux, C., Hadji-Lazaro, J., Coheur, P.-F., Hurtmans, D.: Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes. Atmos. Meas. Tech. 5, 611–630 (2012). https://doi.org/10.5194/amt-5-611-2012

    Article  Google Scholar 

  13. EUMETSAT.: IASI Level 1: Product Guide, EUM/OPSEPS/MAN/04/0032 v4C (2014). Available at: http://www.eumetsat.int/website/home/Data/Products/Level1Data/index.html. Last access 3 Nov 2015

  14. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Dorland, R.V.: Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA (2007)

    Google Scholar 

  15. Forster, P.M.D., Shine, K.P.: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. 102, 10841–10855 (1997). https://doi.org/10.1029/96JD03510

    Article  Google Scholar 

  16. Gauss, M., Myhre, G., Pitari, G., Prather, M.J., Isaksen, I.S.A., Berntsen, T.K., Brasseur, G.P., Dentener, F.J., Derwent, R.G., Hauglustaine, D.A., Horowitz, L.W., Jacob, D.J., Johnson, M., Law, K.S., Mickley, L.J., Müller, J.-F., Plantevin, P.-H., Pyle, J.A., Rogers, H.L., Stevenson, D.S., Sundet, J.K., van Weele, M., Wild, O.: Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere, J. Geophys. Res. 108, 4292 (2003). https://doi.org/10.1029/2002jd002624

    Article  Google Scholar 

  17. Gazeaux, J., Clerbaux, C., George, M., Hadji-Lazaro, J., Kuttippurath, J., Coheur, P.-F., Hurtmans, D., Deshler, T., Kovilakam, M., Campbell, P., Guidard, V., Rabier, F., Thépaut, J.-N.: Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations. Atmos. Meas. Tech. 6, 613–620 (2013). https://doi.org/10.5194/amt-6-613-2013

    Article  Google Scholar 

  18. Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy-Peyret, C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur, P.-F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Faijan, F., Fourrié, N., Gambacorta, A., Goldberg, M., Guidard, V., Hurtmans, D., Illingworth, S., Jacquinet-Husson, N., Kerzenmacher, T., Klaes, D., Lavanant, L., Masiello, G., Matricardi, M., McNally, A., Newman, S., Pavelin, E., Payan, S., Péquignot, E., Peyridieu, S., Phulpin, T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Stubenrauch, C., Taylor, J., Tobin, D., Wolf, W., Zhou, D.: Hyperspectral earth observation from IASI: five years of accomplishments. Am. Meteorol. Soc. 93, 347–370 (2011). https://doi.org/10.1175/BAMS-D-11-00027.1

    Article  Google Scholar 

  19. Hurtmans, D., Coheur, P.-F., Wespes, C., Clarisse, L., Scharf, O., Clerbaux, C., Hadji-Lazaro, J., George, M., Turquety, S.: FORLI radiative transfer and retrieval code for IASI. J. Quant. Spectrosc. Rad. Transf. 113, 1391–1408 (2012). https://doi.org/10.1016/j.jqsrt.2012.02.036

    Article  Google Scholar 

  20. Joiner, J., Schoeberl, M.R., Vasilkov, A.P., Oreopoulos, L., Platnick, S., Livesey, N.J., Levelt, P.F.: Accurate satellite derived estimates of the tropospheric ozone impact on the global radiation budget. Atmos. Chem. Phys. 9, 4447–4465 (2009). https://doi.org/10.5194/acp-9-4447-2009

    Article  Google Scholar 

  21. Lacis, A.A., Wuebbles, D.J., Logan, J.A.: Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res. 95, 9971–9981 (1990). https://doi.org/10.1029/JD095iD07p09971

    Article  Google Scholar 

  22. Li, J.: Gaussian quadrature and its application to infrared radiation. J. Atmos. Sci. 57, 753–765 (2000)

    Article  Google Scholar 

  23. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H.: Anthropogenic and natural radiative forcing. In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA (2013)

    Google Scholar 

  24. Rodgers, C.D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, vol. 2. World Scientific Publishing Co. Pte. Ltd., Signapore (2000)

    Google Scholar 

  25. Scannell, C., Hurtmans, D., Boynard, A., Hadji-Lazaro, J., George, M., Delcloo, A., Tuinder, O., Coheur, P.-F., Clerbaux, C.: Antarctic ozone hole as observed by IASI/MetOp for 2008–2010. Atmos. Meas. Tech. 5, 123–139 (2012). https://doi.org/10.5194/amt-5-123-2012

    Article  Google Scholar 

  26. Shine, K.P., Derwent, R.G., Wuebbles, D.J., Morcrette, J.-J.: Radiative forcing of climate in climate change: The IPCC scientific assessment, report prepared for the intergovernmental panel on climate change by working group 1. Cambridge University Press, Cambridge, NY and Melbourne, Sydney (1990)

    Google Scholar 

  27. Skeie, R.B., Berntsen, T.K., Myhre, G., Tanaka, K., Kvalevåg, M.M., Hoyle, C.R.: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys. 11, 11827–11857 (2011). https://doi.org/10.5194/acp-11-11827-2011

    Article  Google Scholar 

  28. Søvde, O.A., Hoyle, C.R., Myhre, G., Isaksen, I.S.A.: The HNO3 forming branch of the HO2 CNO reaction: pre-industrial-to-present trends in atmospheric species and radiative forcings. Atmos. Chem. Phys. 11, 8929–8943 (2011). https://doi.org/10.5194/acp-11-8929-2011

    Article  Google Scholar 

  29. Worden, H.M., Bowman, K.W., Worden, J.R., Eldering, A., Beer, R.: Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nat. Geosci. 1, 305–308 (2008). https://doi.org/10.1038/ngeo182

    Article  Google Scholar 

  30. Worden, H.M., Bowman, K.W., Kulawik, S.S., Aghedo, A.M.: Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura-TES. J. Geophys. Res. 116, D03309 (2011). https://doi.org/10.1029/2006JD007258

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the contribution of D. Hurtmans, L. Clarisse and P.-F. Coheur [Université Libre de Bruxelles, Belgium (ULB)], C. Clerbaux (LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, France and ULB), H. M. Worden (Atmospheric Chemistry Observations & Modeling Laboratory, NCAR, USA) and K. W. Bowman (Jet Propulsion Laboratory, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatia Doniki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doniki, S. (2019). Calculating the O3 Instantaneous Longwave Radiative Impact from Satellite Observations. In: Palocz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L., Taligás, T. (eds) International Climate Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-03816-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03816-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03815-1

  • Online ISBN: 978-3-030-03816-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics