Advertisement

Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions

  • Fabrice BenhamoudaEmail author
  • Huijia Lin
  • Antigoni Polychroniadou
  • Muthuramakrishnan Venkitasubramaniam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11239)

Abstract

We present the first two-round multiparty computation (MPC) protocols secure against malicious adaptive corruption in the common reference string (CRS) model, based on DDH, LWE, or QR. Prior two-round adaptively secure protocols were known only in the two-party setting against semi-honest adversaries, or in the general multiparty setting assuming the existence of indistinguishability obfuscation (iO).

Our protocols are constructed in two steps. First, we construct two-round oblivious transfer (OT) protocols secure against malicious adaptive corruption in the CRS model based on DDH, LWE, or QR. We achieve this by generically transforming any two-round OT that is only secure against static corruption but has certain oblivious sampleability properties, into a two-round adaptively secure OT. Prior constructions were only secure against semi-honest adversaries or based on iO.

Second, building upon recent constructions of two-round MPC from two-round OT in the weaker static corruption setting [Garg and Srinivasan, Benhamouda and Lin, Eurocrypt’18] and using equivocal garbled circuits from [Canetti, Poburinnaya and Venkitasubramaniam, STOC’17], we show how to construct two-round adaptively secure MPC from two-round adaptively secure OT and constant-round adaptively secure MPC, with respect to both malicious and semi-honest adversaries. As a corollary, we also obtain the first 2-round MPC secure against semi-honest adaptive corruption in the plain model based on augmented non-committing encryption (NCE), which can be based on a variety of assumptions, CDH, RSA, DDH, LWE, or factoring Blum integers. Finally, we mention that our OT and MPC protocols in the CRS model are, in fact, adaptively secure in the Universal Composability framework.

Notes

Acknowledgments

We thank the anonymous reviewers of TCC 2018 for their insightful comments. Huijia Lin was supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois. Antigoni Polychroniadou was supported by the Junior Simons Fellowship awarded by the Simons Society of Fellows. Muthuramakrishnan Venkitasubramaniam was supported by Google Faculty Research Grant and NSF Award CNS-1526377 and this work was partly carried out during a visit to DIMACS supported by the National Science Foundation under grant number CNS-1523467. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

References

  1. 1.
    Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explainable hash proof systems. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 151–174. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_7 CrossRefGoogle Scholar
  2. 2.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_29 CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988Google Scholar
  4. 4.
    Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 644–674. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_22 CrossRefGoogle Scholar
  5. 5.
    Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_17 CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 1292–1303. ACM Press, October 2016Google Scholar
  7. 7.
    Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_6 CrossRefGoogle Scholar
  8. 8.
    Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: ITCS (2018, to appear)Google Scholar
  9. 9.
    Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_8 CrossRefGoogle Scholar
  10. 10.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  11. 11.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_4 CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996Google Scholar
  13. 13.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_2 CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party computation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_22 CrossRefGoogle Scholar
  15. 15.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, May 2002Google Scholar
  16. 16.
    Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adaptive multi-party computation. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 396–427. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_14 CrossRefGoogle Scholar
  17. 17.
    Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating yao: constant-round adaptively secure multiparty computation in the plain model. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 497–509. ACM Press, June 2017Google Scholar
  18. 18.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_17 CrossRefGoogle Scholar
  19. 19.
    Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_6 CrossRefGoogle Scholar
  20. 20.
    Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_31 CrossRefGoogle Scholar
  21. 21.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4 CrossRefGoogle Scholar
  22. 22.
    Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable, multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_23 CrossRefGoogle Scholar
  23. 23.
    Damgård, I., Polychroniadou, A., Rao, V.: Adaptively secure multi-party computation from LWE (via equivocal FHE). In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 208–233. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49387-8_9 CrossRefGoogle Scholar
  24. 24.
    Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_30 CrossRefGoogle Scholar
  25. 25.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_4 CrossRefGoogle Scholar
  26. 26.
    Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_24 CrossRefGoogle Scholar
  27. 27.
    Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)Google Scholar
  28. 28.
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_16 CrossRefGoogle Scholar
  29. 29.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987Google Scholar
  30. 30.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_4 CrossRefGoogle Scholar
  32. 32.
    Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptol. 25(1), 158–193 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_37 CrossRefGoogle Scholar
  34. 34.
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_26 CrossRefGoogle Scholar
  35. 35.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) 12th SODA, pp. 448–457. ACM-SIAM, January 2001Google Scholar
  36. 36.
    Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_9 CrossRefGoogle Scholar
  37. 37.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_31 CrossRefGoogle Scholar
  38. 38.
    Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, November 1982Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Fabrice Benhamouda
    • 1
    Email author
  • Huijia Lin
    • 2
  • Antigoni Polychroniadou
    • 3
  • Muthuramakrishnan Venkitasubramaniam
    • 4
  1. 1.IBM ResearchYorktown HeightsUSA
  2. 2.University of CaliforniaSanta BarbaraUSA
  3. 3.Cornell TechNew YorkUSA
  4. 4.University of RochesterRochesterUSA

Personalised recommendations